
SESSION 3

Programming Languages for Objects

 Blocks, Loops, and Branches
 Algorithm Development
 The while and do..while Statements
 The for Statement
 The if Statement
 The switch Statement
 Introduction to Exceptions and try..catch
 Introduction to Arrays
 Introduction to GUI Programming

Programming in the Small II: Control

THE BASIC BUILDING BLOCKS of programs -- variables, expressions, assignment

statements, and subroutine call statements -- were covered in the previous chapter. Starting with

this chapter, we look at how these building blocks can be put together to build complex programs

with more interesting behavior.

Since we are still working on the level of "programming in the small" in this chapter, we are

interested in the kind of complexity that can occur within a single subroutine. On this level,

complexity is provided by control structures. The two types of control structures, loops and

branches, can be used to repeat a sequence of statements over and over or to choose among two

or more possible courses of action. Java includes several control structures of each type, and we

will look at each of them in some detail.

Program complexity can be seen not just in control structures but also in data structures. A data

structure is an organized collection of data, chunked together so that it can be treated as a unit.

Section 3.8 in this chapter includes an introduction to one of the most common data structures:

arrays.

The chapter will also begin the study of program design. Given a problem, how can you come up

with a program to solve that problem? We'll look at a partial answer to this question in

Section 3.2. Finally, Section 3.9 is a very brief first look at GUI programming

Programming in the Large I: Subroutines

http://math.hws.edu/javanotes/c3/s1.html
http://math.hws.edu/javanotes/c3/s2.html
http://math.hws.edu/javanotes/c3/s3.html
http://math.hws.edu/javanotes/c3/s4.html
http://math.hws.edu/javanotes/c3/s5.html
http://math.hws.edu/javanotes/c3/s6.html
http://math.hws.edu/javanotes/c3/s7.html
http://math.hws.edu/javanotes/c3/s8.html
http://math.hws.edu/javanotes/c3/s9.html
http://math.hws.edu/javanotes/c3/s8.html
http://math.hws.edu/javanotes/c3/s2.html
http://math.hws.edu/javanotes/c3/s9.html

ONE WAY TO BREAK UP A COMPLEX PROGRAM into manageable pieces is to use

subroutines. A subroutine consists of the instructions for carrying out a certain task, grouped

together and given a name. Elsewhere in the program, that name can be used as a stand-in for the

whole set of instructions. As a computer executes a program, whenever it encounters a

subroutine name, it executes all the instructions necessary to carry out the task associated with

that subroutine.

Subroutines can be used over and over, at different places in the program. A subroutine can even

be used inside another subroutine. This allows you to write simple subroutines and then use them

to help write more complex subroutines, which can then be used in turn in other subroutines. In

this way, very complex programs can be built up step-by-step, where each step in the

construction is reasonably simple.

Subroutines in Java can be either static or non-static. This chapter covers static subroutines. Non-

static subroutines, which are used in true object-oriented programming, will be covered in the

next chapter.

Blocks, Loops, and Branches

THE ABILITY OF A COMPUTER TO PERFORM complex tasks is built on just a few ways of

combining simple commands into control structures. In Java, there are just six such structures

that are used to determine the normal flow of control in a program -- and, in fact, just three of

them would be enough to write programs to perform any task. The six control structures are: the

block, the while loop, the do..while loop, the for loop, the if statement, and the switch statement.

Each of these structures is considered to be a single "statement," but a structured statement that

can contain one or more other statements inside itself.

3.1.1 Blocks

The block is the simplest type of structured statement. Its purpose is simply to group a sequence

of statements into a single statement. The format of a block is:

{

 statements

}

That is, it consists of a sequence of statements enclosed between a pair of braces, "{" and "}". In

fact, it is possible for a block to contain no statements at all; such a block is called an empty

block, and can actually be useful at times. An empty block consists of nothing but an empty pair

of braces. Block statements usually occur inside other statements, where their purpose is to group

together several statements into a unit. However, a block can be legally used wherever a

statement can occur. There is one place where a block is required: As you might have already

noticed in the case of the main subroutine of a program, the definition of a subroutine is a block,

since it is a sequence of statements enclosed inside a pair of braces.

I should probably note again at this point that Java is what is called a free-format language.

There are no syntax rules about how the language has to be arranged on a page. So, for example,

you could write an entire block on one line if you want. But as a matter of good programming

style, you should lay out your program on the page in a way that will make its structure as clear

as possible. In general, this means putting one statement per line and using indentation to

indicate statements that are contained inside control structures. This is the format that I will

generally use in my examples.

Here are two examples of blocks:

{

 System.out.print("The answer is ");

 System.out.println(ans);

}

{ // This block exchanges the values of x and y

 int temp; // A temporary variable for use in this block.

 temp = x; // Save a copy of the value of x in temp.

 x = y; // Copy the value of y into x.

 y = temp; // Copy the value of temp into y.

}

In the second example, a variable, temp, is declared inside the block. This is perfectly legal, and

it is good style to declare a variable inside a block if that variable is used nowhere else but inside

the block. A variable declared inside a block is completely inaccessible and invisible from

outside that block. When the computer executes the variable declaration statement, it allocates

memory to hold the value of the variable. When the block ends, that memory is discarded (that

is, made available for reuse). The variable is said to be local to the block. There is a general

concept called the "scope" of an identifier. The scope of an identifier is the part of the program in

which that identifier is valid. The scope of a variable defined inside a block is limited to that

block, and more specifically to the part of the block that comes after the declaration of the

variable.

3.1.2 The Basic While Loop

The block statement by itself really doesn't affect the flow of control in a program. The five

remaining control structures do. They can be divided into two classes: loop statements and

branching statements. You really just need one control structure from each category in order to

have a completely general-purpose programming language. More than that is just convenience.

In this section, I'll introduce the while loop and the if statement. I'll give the full details of

these statements and of the other three control structures in later sections.

A while loop is used to repeat a given statement over and over. Of course, it's not likely that you

would want to keep repeating it forever. That would be an infinite loop, which is generally a bad

thing. (There is an old story about computer pioneer Grace Murray Hopper, who read

instructions on a bottle of shampoo telling her to "lather, rinse, repeat." As the story goes, she

claims that she tried to follow the directions, but she ran out of shampoo. (In case you don't get

it, this is a joke about the way that computers mindlessly follow instructions.))

To be more specific, a while loop will repeat a statement over and over, but only so long as a

specified condition remains true. A while loop has the form:

while (boolean-expression)

 statement

Since the statement can be, and usually is, a block, most while loops have the form:

while (boolean-expression) {

 statements

}

Some programmers think that the braces should always be included as a matter of style, even

when there is only one statement between them, but I don't always follow that advice myself.

The semantics of the while statement go like this: When the computer comes to a while

statement, it evaluates the boolean-expression, which yields either true or false as its value.

If the value is false, the computer skips over the rest of the while loop and proceeds to the

next command in the program. If the value of the expression is true, the computer executes the

statement or block of statements inside the loop. Then it returns to the beginning of the while

loop and repeats the process. That is, it re-evaluates the boolean-expression, ends the loop if the

value is false, and continues it if the value is true. This will continue over and over until the

value of the expression is false when the computer evaluates it; if that never happens, then

there will be an infinite loop.

Here is an example of a while loop that simply prints out the numbers 1, 2, 3, 4, 5:

int number; // The number to be printed.

number = 1; // Start with 1.

while (number < 6) { // Keep going as long as number is < 6.

 System.out.println(number);

 number = number + 1; // Go on to the next number.

}

System.out.println("Done!");

The variable number is initialized with the value 1. So when the computer evaluates the

expression "number < 6" for the first time, it is asking whether 1 is less than 6, which is

true. The computer therefore proceeds to execute the two statements inside the loop. The first

statement prints out "1". The second statement adds 1 to number and stores the result back into

the variable number; the value of number has been changed to 2. The computer has reached

the end of the loop, so it returns to the beginning and asks again whether number is less than 6.

Once again this is true, so the computer executes the loop again, this time printing out 2 as the

value of number and then changing the value of number to 3. It continues in this way until

eventually number becomes equal to 6. At that point, the expression "number < 6" evaluates

to false. So, the computer jumps past the end of the loop to the next statement and prints out

the message "Done!". Note that when the loop ends, the value of number is 6, but the last value

that was printed was 5.

By the way, you should remember that you'll never see a while loop standing by itself in a real

program. It will always be inside a subroutine which is itself defined inside some class. As an

example of a while loop used inside a complete program, here is a little program that computes

the interest on an investment over several years. This is an improvement over examples from the

previous chapter that just reported the results for one year:

/**

 * This class implements a simple program that will compute the

amount of

 * interest that is earned on an investment over a period of 5

years. The

 * initial amount of the investment and the interest rate are

input by the

 * user. The value of the investment at the end of each year is

output.

 */

public class Interest3 {

 public static void main(String[] args) {

 double principal; // The value of the investment.

 double rate; // The annual interest rate.

 /* Get the initial investment and interest rate from the

user. */

 System.out.print("Enter the initial investment: ");

 principal = TextIO.getlnDouble();

 System.out.println();

 System.out.println("Enter the annual interest rate.");

 System.out.print("Enter a decimal, not a percentage: ");

 rate = TextIO.getlnDouble();

 System.out.println();

 /* Simulate the investment for 5 years. */

 int years; // Counts the number of years that have passed.

 years = 0;

 while (years < 5) {

 double interest; // Interest for this year.

 interest = principal * rate;

 principal = principal + interest; // Add it to

principal.

 years = years + 1; // Count the current year.

 System.out.print("The value of the investment after ");

 System.out.print(years);

 System.out.print(" years is $");

 System.out.printf("%1.2f", principal);

 System.out.println();

 } // end of while loop

 } // end of main()

} // end of class Interest3

You should study this program, and make sure that you understand what the computer does step-

by-step as it executes the while loop.

3.1.3 The Basic If Statement

An if statement tells the computer to take one of two alternative courses of action, depending on

whether the value of a given boolean-valued expression is true or false. It is an example of a

"branching" or "decision" statement. An if statement has the form:

if (boolean-expression)

 statement1

else

 statement2

When the computer executes an if statement, it evaluates the boolean expression. If the value is

true, the computer executes the first statement and skips the statement that follows the "else".

If the value of the expression is false, then the computer skips the first statement and executes

the second one. Note that in any case, one and only one of the two statements inside the if

statement is executed. The two statements represent alternative courses of action; the computer

decides between these courses of action based on the value of the boolean expression.

In many cases, you want the computer to choose between doing something and not doing it. You

can do this with an if statement that omits the else part:

if (boolean-expression)

 statement

To execute this statement, the computer evaluates the expression. If the value is true, the

computer executes the statement that is contained inside the if statement; if the value is

false, the computer skips over that statement. In either case, the computer then continues with

whatever follows the if statement in the program.

Sometimes, novice programmers confuse while statements with simple if statements (with no

else part), although their meanings are quite different. The statement in an if is executed at

most once, while the statement in a while can be executed any number of times. It can be

helpful to look at diagrams of the the flow of control for while and simple if statements:

In these diagrams, the arrows represent the flow of time as the statement is executed. Control

enters the diagram at the top and leaves at the bottom. Similarly, a flow control diagram for an

if..else statement makes it clear that exactly one of the two nested statements is executed:

Of course, either or both of the statements in an if statement can be a block, and again many

programmers prefer to add the braces even when they contain just a single statement. So an if

statement often looks like:

if (boolean-expression) {

 statements

}

else {

 statements

}

or:

if (boolean-expression) {

 statements

}

As an example, here is an if statement that exchanges the value of two variables, x and y, but

only if x is greater than y to begin with. After this if statement has been executed, we can be

sure that the value of x is definitely less than or equal to the value of y:

if (x > y) {

 int temp; // A temporary variable for use in this block.

 temp = x; // Save a copy of the value of x in temp.

 x = y; // Copy the value of y into x.

 y = temp; // Copy the value of temp into y.

}

Finally, here is an example of an if statement that includes an else part. See if you can figure

out what it does, and why it would be used:

if (years > 1) { // handle case for 2 or more years

 System.out.print("The value of the investment after ");

 System.out.print(years);

 System.out.print(" years is $");

}

else { // handle case for 1 year

 System.out.print("The value of the investment after 1 year is

$");

} // end of if statement

System.out.printf("%1.2f", principal); // this is done in any case

I'll have more to say about control structures later in this chapter. But you already know the

essentials. If you never learned anything more about control structures, you would already know

enough to perform any possible computing task. Simple looping and branching are all you really

need!

3.1.4 Definite Assignment

I will finish this introduction to control structures with a somewhat technical issue that you might

not fully understand the first time you encounter it. Consider the following two code segments,

which seem to be entirely equivalent:

int y; int y;

if (x < 0) { if (x < 0) {

 y = 1; y = 1;

} }

else { if (x >= 0) {

 y = 2; y = 2;

} }

System.out.println(y); System.out.println(y);

In the version on the left, y is assigned the value 1 if x < 0 and is assigned the value 2

otherwise, that is, if x >= 0. Exactly the same is true of the version on the right. However,

there is a subtle difference. In fact, the Java compiler will report an error for the

System.out.println statement in the code on the right, while the code on the left is

perfectly fine!

The problem is that in the code on the right, the computer can't tell that the variable y has

definitely been assigned a value. When an if statement has no else part, the statement inside

the if might or might not be executed, depending on the value of the condition. The compiler

can't tell whether it will be executed or not, since the condition will only be evaluated when the

program is running. For the code on the right above, as far as the compiler is concerned, it is

possible that neither statement, y = 1 or y = 2, will be evaluated, so it is possible that the

output statement is trying to print an undefined value. The compiler considers this to be an error.

The value of a variable can only be used if the compiler can verify that the variable will have

been assigned a value at that point when the program is running. This is called definite

assignment. (It doesn't matter that you can tell that y will always be assigned a value in this

example. The question is whether the compiler can tell.)

Note that in the code on the left above, y is definitely assigned a value, since in an if..else

statement, one of the two alternatives will be executed no matter what the value of the condition

in the if. It is important that you understand that there is a difference between an if..else

statement and a pair of plain if statements. Here is another pair of code segments that might

seem to do the same thing, but don't. What's the value of x after each code segment is executed?

int x; int x;

x = -1; x = -1;

if (x < 0) if (x < 0)

 x = 1; x = 1;

else if (x >= 0)

 x = 2; x = 2;

After the code on the left is executed, x is 1; after the code on the right, x is 2.

PROGRAMMING IS DIFFICULT (like many activities that are useful and worthwhile -- and

like most of those activities, it can also be rewarding and a lot of fun). When you write a

program, you have to tell the computer every small detail of what to do. And you have to get

everything exactly right, since the computer will blindly follow your program exactly as written.

How, then, do people write any but the most simple programs? It's not a big mystery, actually.

It's a matter of learning to think in the right way.

A program is an expression of an idea. A programmer starts with a general idea of a task for the

computer to perform. Presumably, the programmer has some idea of how to perform the task by

hand, at least in general outline. The problem is to flesh out that outline into a complete,

unambiguous, step-by-step procedure for carrying out the task. Such a procedure is called an

"algorithm." (Technically, an algorithm is an unambiguous, step-by-step procedure that always

terminates after a finite number of steps. We don't want to count procedures that might go on

forever.) An algorithm is not the same as a program. A program is written in some particular

programming language. An algorithm is more like the idea behind the program, but it's the idea

of the steps the program will take to perform its task, not just the idea of the task itself. When

describing an algorithm, the steps don't necessarily have to be specified in complete detail, as

long as the steps are unambiguous and it's clear that carrying out the steps will accomplish the

assigned task. An algorithm can be expressed in any language, including English. Of course, an

algorithm can only be expressed as an actual program if all the details have been filled in.

So, where do algorithms come from? Usually, they have to be developed, often with a lot of

thought and hard work. Skill at algorithm development is something that comes with practice,

but there are techniques and guidelines that can help. I'll talk here about some techniques and

guidelines that are relevant to "programming in the small," and I will return to the subject several

times in later chapters.

3.2.1 Pseudocode and Stepwise Refinement

When programming in the small, you have a few basics to work with: variables, assignment

statements, and input/output routines. You might also have some subroutines, objects, or other

building blocks that have already been written by you or someone else. (Input/output routines

fall into this class.) You can build sequences of these basic instructions, and you can also

combine them into more complex control structures such as while loops and if statements.

Suppose you have a task in mind that you want the computer to perform. One way to proceed is

to write a description of the task, and take that description as an outline of the algorithm you

want to develop. Then you can refine and elaborate that description, gradually adding steps and

detail, until you have a complete algorithm that can be translated directly into programming

language. This method is called stepwise refinement, and it is a type of top-down design. As you

proceed through the stages of stepwise refinement, you can write out descriptions of your

algorithm in pseudocode -- informal instructions that imitate the structure of programming

languages without the complete detail and perfect syntax of actual program code.

As an example, let's see how one might develop the program from the previous section, which

computes the value of an investment over five years. The task that you want the program to

perform is: "Compute and display the value of an investment for each of the next five years,

where the initial investment and interest rate are to be specified by the user." You might then

write -- or more likely just think -- that this can be expanded as:

Get the user's input

Compute the value of the investment after 1 year

Display the value

Compute the value after 2 years

Display the value

Compute the value after 3 years

Display the value

Compute the value after 4 years

Display the value

Compute the value after 5 years

Display the value

This is correct, but rather repetitive. And seeing that repetition, you might notice an opportunity

to use a loop. A loop would take less typing. More important, it would be more general:

Essentially the same loop will work no matter how many years you want to process. So, you

might rewrite the above sequence of steps as:

Get the user's input

while there are more years to process:

 Compute the value after the next year

 Display the value

Following this algorithm would certainly solve the problem, but for a computer we'll have to be

more explicit about how to "Get the user's input," how to "Compute the value after the next

year," and what it means to say "there are more years to process." We can expand the step, "Get

the user's input" into

Ask the user for the initial investment

Read the user's response

Ask the user for the interest rate

Read the user's response

To fill in the details of the step "Compute the value after the next year," you have to know how

to do the computation yourself. (Maybe you need to ask your boss or professor for clarification?)

Let's say you know that the value is computed by adding some interest to the previous value.

Then we can refine the while loop to:

while there are more years to process:

 Compute the interest

 Add the interest to the value

 Display the value

As for testing whether there are more years to process, the only way that we can do that is by

counting the years ourselves. This displays a very common pattern, and you should expect to use

something similar in a lot of programs: We have to start with zero years, add one each time we

process a year, and stop when we reach the desired number of years. This is sometimes called a

counting loop. So the while loop becomes:

years = 0

while years < 5:

 years = years + 1

 Compute the interest

 Add the interest to the value

 Display the value

We still have to know how to compute the interest. Let's say that the interest is to be computed

by multiplying the interest rate by the current value of the investment. Putting this together with

the part of the algorithm that gets the user's inputs, we have the complete algorithm:

Ask the user for the initial investment

Read the user's response

Ask the user for the interest rate

Read the user's response

years = 0

while years < 5:

 years = years + 1

 Compute interest = value * interest rate

 Add the interest to the value

 Display the value

Finally, we are at the point where we can translate pretty directly into proper programming-

language syntax. We still have to choose names for the variables, decide exactly what we want to

say to the user, and so forth. Having done this, we could express our algorithm in Java as:

double principal, rate, interest; // declare the variables

int years;

System.out.print("Type initial investment: ");

principal = TextIO.getlnDouble();

System.out.print("Type interest rate: ");

rate = TextIO.getlnDouble();

years = 0;

while (years < 5) {

 years = years + 1;

 interest = principal * rate;

 principal = principal + interest;

 System.out.println(principal);

}

This still needs to be wrapped inside a complete program, it still needs to be commented, and it

really needs to print out more information in a nicer format for the user. But it's essentially the

same program as the one in the previous section. (Note that the pseudocode algorithm used

indentation to show which statements are inside the loop. In Java, indentation is completely

ignored by the computer, so you need a pair of braces to tell the computer which statements are

in the loop. If you leave out the braces, the only statement inside the loop would be

"years = years + 1;". The other statements would only be executed once, after the loop

ends. The nasty thing is that the computer won't notice this error for you, like it would if you left

out the parentheses around "(years < 5)". The parentheses are required by the syntax of the

while statement. The braces are only required semantically. The computer can recognize

syntax errors but not semantic errors.)

One thing you should have noticed here is that my original specification of the problem --

"Compute and display the value of an investment for each of the next five years" -- was far from

being complete. Before you start writing a program, you should make sure you have a complete

specification of exactly what the program is supposed to do. In particular, you need to know

what information the program is going to input and output and what computation it is going to

perform. Here is what a reasonably complete specification of the problem might look like in this

example:

"Write a program that will compute and display the value of an investment for each of the next

five years. Each year, interest is added to the value. The interest is computed by multiplying the

current value by a fixed interest rate. Assume that the initial value and the rate of interest are to

be input by the user when the program is run."

3.2.2 The 3N+1 Problem

Let's do another example, working this time with a program that you haven't already seen. The

assignment here is an abstract mathematical problem that is one of my favorite programming

exercises. This time, we'll start with a more complete specification of the task to be performed:

"Given a positive integer, N, define the '3N+1' sequence starting from N as follows: If N is an

even number, then divide N by two; but if N is odd, then multiply N by 3 and add 1. Continue to

generate numbers in this way until N becomes equal to 1. For example, starting from N = 3,

which is odd, we multiply by 3 and add 1, giving N = 3*3+1 = 10. Then, since N is even, we

divide by 2, giving N = 10/2 = 5. We continue in this way, stopping when we reach 1. The

complete sequence is: 3, 10, 5, 16, 8, 4, 2, 1.

"Write a program that will read a positive integer from the user and will print out the 3N+1

sequence starting from that integer. The program should also count and print out the number of

terms in the sequence."

A general outline of the algorithm for the program we want is:

 Get a positive integer N from the user.

 Compute, print, and count each number in the sequence.

 Output the number of terms.

The bulk of the program is in the second step. We'll need a loop, since we want to keep

computing numbers until we get 1. To put this in terms appropriate for a while loop, we need

to know when to continue the loop rather than when to stop it: We want to continue as long as

the number is not 1. So, we can expand our pseudocode algorithm to:

Get a positive integer N from the user;

while N is not 1:

 Compute N = next term;

 Output N;

 Count this term;

Output the number of terms;

In order to compute the next term, the computer must take different actions depending on

whether N is even or odd. We need an if statement to decide between the two cases:

Get a positive integer N from the user;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Count this term;

Output the number of terms;

We are almost there. The one problem that remains is counting. Counting means that you start

with zero, and every time you have something to count, you add one. We need a variable to do

the counting. The variable must be set to zero once, before the loop starts, and it must be

incremented within the loop. (Again, this is a common pattern that you should expect to see over

and over.) With the counter added, we get:

Get a positive integer N from the user;

Let counter = 0;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Add 1 to counter;

Output the counter;

We still have to worry about the very first step. How can we get a positive integer from the user?

If we just read in a number, it's possible that the user might type in a negative number or zero. If

you follow what happens when the value of N is negative or zero, you'll see that the program will

go on forever, since the value of N will never become equal to 1. This is bad. In this case, the

problem is probably no big deal, but in general you should try to write programs that are

foolproof. One way to fix this is to keep reading in numbers until the user types in a positive

number:

Ask user to input a positive number;

Let N be the user's response;

while N is not positive:

 Print an error message;

 Read another value for N;

Let counter = 0;

while N is not 1:

 if N is even:

 Compute N = N/2;

 else

 Compute N = 3 * N + 1;

 Output N;

 Add 1 to counter;

Output the counter;

The first while loop will end only when N is a positive number, as required. (A common

beginning programmer's error is to use an if statement instead of a while statement here: "If N

is not positive, ask the user to input another value." The problem arises if the second number

input by the user is also non-positive. The if statement is only executed once, so the second

input number is never tested, and the program proceeds into an infinite loop. With the while

loop, after the second number is input, the computer jumps back to the beginning of the loop and

tests whether the second number is positive. If not, it asks the user for a third number, and it will

continue asking for numbers until the user enters an acceptable input. After the while loop ends,

we can be absolutely sure that N is a positive number.)

Here is a Java program implementing this algorithm. It uses the operators <= to mean "is less

than or equal to" and != to mean "is not equal to." To test whether N is even, it uses

"N % 2 == 0". All the operators used here were discussed in Section 2.5.

/**

 * This program prints out a 3N+1 sequence starting from a positive

 * integer specified by the user. It also counts the number of

 * terms in the sequence, and prints out that number.

 */

 public class ThreeN1 {

 public static void main(String[] args) {

 int N; // for computing terms in the sequence

 int counter; // for counting the terms

 System.out.print("Starting point for sequence: ");

 N = TextIO.getlnInt();

 while (N <= 0) {

 System.out.print(

 "The starting point must be positive. Please try

again: ");

 N = TextIO.getlnInt();

 }

 // At this point, we know that N > 0

 counter = 0;

 while (N != 1) {

 if (N % 2 == 0)

 N = N / 2;

 else

 N = 3 * N + 1;

 System.out.println(N);

 counter = counter + 1;

 }

 System.out.println();

 System.out.print("There were ");

 System.out.print(counter);

 System.out.println(" terms in the sequence.");

 } // end of main()

 } // end of class ThreeN1

Two final notes on this program: First, you might have noticed that the first term of the sequence

-- the value of N input by the user -- is not printed or counted by this program. Is this an error?

It's hard to say. Was the specification of the program careful enough to decide? This is the type

of thing that might send you back to the boss/professor for clarification. The problem (if it is

one!) can be fixed easily enough. Just replace the line "counter = 0" before the while loop with

the two lines:

System.out.println(N); // print out initial term

counter = 1; // and count it

http://math.hws.edu/javanotes/c2/s5.html

Second, there is the question of why this problem might be interesting. Well, it's interesting to

mathematicians and computer scientists because of a simple question about the problem that they

haven't been able to answer: Will the process of computing the 3N+1 sequence finish after a

finite number of steps for all possible starting values of N? Although individual sequences are

easy to compute, no one has been able to answer the general question. To put this another way,

no one knows whether the process of computing 3N+1 sequences can properly be called an

algorithm, since an algorithm is required to terminate after a finite number of steps! (Note: This

discussion really applies to integers, not to values of type int! That is, it assumes that the value of

N can take on arbitrarily large integer values, which is not true for a variable of type int in a Java

program. When the value of N in the program becomes too large to be represented as a 32-bit int,

the values output by the program are no longer mathematically correct. So the Java program does

not compute the correct 3N+1 sequence if N becomes too large. See Exercise 8.2.)

3.2.3 Coding, Testing, Debugging

It would be nice if, having developed an algorithm for your program, you could relax, press a

button, and get a perfectly working program. Unfortunately, the process of turning an algorithm

into Java source code doesn't always go smoothly. And when you do get to the stage of a

working program, it's often only working in the sense that it does something. Unfortunately not

what you want it to do.

After program design comes coding: translating the design into a program written in Java or

some other language. Usually, no matter how careful you are, a few syntax errors will creep in

from somewhere, and the Java compiler will reject your program with some kind of error

message. Unfortunately, while a compiler will always detect syntax errors, it's not very good

about telling you exactly what's wrong. Sometimes, it's not even good about telling you where

the real error is. A spelling error or missing "{" on line 45 might cause the compiler to choke on

line 105. You can avoid lots of errors by making sure that you really understand the syntax rules

of the language and by following some basic programming guidelines. For example, I never type

a "{" without typing the matching "}". Then I go back and fill in the statements between the

braces. A missing or extra brace can be one of the hardest errors to find in a large program.

Always, always indent your program nicely. If you change the program, change the indentation

to match. It's worth the trouble. Use a consistent naming scheme, so you don't have to struggle to

remember whether you called that variable interestrate or interestRate. In general,

when the compiler gives multiple error messages, don't try to fix the second error message from

the compiler until you've fixed the first one. Once the compiler hits an error in your program, it

can get confused, and the rest of the error messages might just be guesses. Maybe the best advice

is: Take the time to understand the error before you try to fix it. Programming is not an

experimental science.

When your program compiles without error, you are still not done. You have to test the program

to make sure it works correctly. Remember that the goal is not to get the right output for the two

sample inputs that the professor gave in class. The goal is a program that will work correctly for

all reasonable inputs. Ideally, when faced with an unreasonable input, it should respond by

http://math.hws.edu/javanotes/c8/ex2-ans.html

gently chiding the user rather than by crashing. Test your program on a wide variety of inputs.

Try to find a set of inputs that will test the full range of functionality that you've coded into your

program. As you begin writing larger programs, write them in stages and test each stage along

the way. You might even have to write some extra code to do the testing -- for example to call a

subroutine that you've just written. You don't want to be faced, if you can avoid it, with 500

newly written lines of code that have an error in there somewhere.

The point of testing is to find bugs -- semantic errors that show up as incorrect behavior rather

than as compilation errors. And the sad fact is that you will probably find them. Again, you can

minimize bugs by careful design and careful coding, but no one has found a way to avoid them

altogether. Once you've detected a bug, it's time for debugging. You have to track down the

cause of the bug in the program's source code and eliminate it. Debugging is a skill that, like

other aspects of programming, requires practice to master. So don't be afraid of bugs. Learn from

them. One essential debugging skill is the ability to read source code -- the ability to put aside

preconceptions about what you think it does and to follow it the way the computer does --

mechanically, step-by-step -- to see what it really does. This is hard. I can still remember the

time I spent hours looking for a bug only to find that a line of code that I had looked at ten times

had a "1" where it should have had an "i", or the time when I wrote a subroutine named

WindowClosing which would have done exactly what I wanted except that the computer was

looking for windowClosing (with a lower case "w"). Sometimes it can help to have someone

who doesn't share your preconceptions look at your code.

Often, it's a problem just to find the part of the program that contains the error. Most

programming environments come with a debugger, which is a program that can help you find

bugs. Typically, your program can be run under the control of the debugger. The debugger

allows you to set "breakpoints" in your program. A breakpoint is a point in the program where

the debugger will pause the program so you can look at the values of the program's variables.

The idea is to track down exactly when things start to go wrong during the program's execution.

The debugger will also let you execute your program one line at a time, so that you can watch

what happens in detail once you know the general area in the program where the bug is lurking.

I will confess that I only occasionally use debuggers myself. A more traditional approach to

debugging is to insert debugging statements into your program. These are output statements that

print out information about the state of the program. Typically, a debugging statement would say

something like

System.out.println("At start of while loop, N = " + N);

You need to be able to tell from the output where in your program the output is coming from,

and you want to know the value of important variables. Sometimes, you will find that the

computer isn't even getting to a part of the program that you think it should be executing.

Remember that the goal is to find the first point in the program where the state is not what you

expect it to be. That's where the bug is.

And finally, remember the golden rule of debugging: If you are absolutely sure that everything in

your program is right, and if it still doesn't work, then one of the things that you are absolutely

sure of is wrong.

The while and do..while Statements

STATEMENTS IN JAVA CAN be either simple statements or compound statements. Simple

statements, such as assignment statements and subroutine call statements, are the basic building

blocks of a program. Compound statements, such as while loops and if statements, are used to

organize simple statements into complex structures, which are called control structures because

they control the order in which the statements are executed. The next five sections explore the

details of control structures that are available in Java, starting with the while statement and the

do..while statement in this section. At the same time, we'll look at examples of programming

with each control structure and apply the techniques for designing algorithms that were

introduced in the previous section.

3.3.1 The while Statement

The while statement was already introduced in Section 3.1. A while loop has the form

while (boolean-expression)

 statement

The statement can, of course, be a block statement consisting of several statements grouped

together between a pair of braces. This statement is called the body of the loop. The body of the

loop is repeated as long as the boolean-expression is true. This boolean expression is called the

continuation condition, or more simply the test, of the loop. There are a few points that might

need some clarification. What happens if the condition is false in the first place, before the body

of the loop is executed even once? In that case, the body of the loop is never executed at all. The

body of a while loop can be executed any number of times, including zero. What happens if the

condition is true, but it becomes false somewhere in the middle of the loop body? Does the loop

end as soon as this happens? It doesn't, because the computer continues executing the body of the

loop until it gets to the end. Only then does it jump back to the beginning of the loop and test the

condition, and only then can the loop end.

Let's look at a typical problem that can be solved using a while loop: finding the average of a

set of positive integers entered by the user. The average is the sum of the integers, divided by the

number of integers. The program will ask the user to enter one integer at a time. It will keep

count of the number of integers entered, and it will keep a running total of all the numbers it has

read so far. Here is a pseudocode algorithm for the program:

Let sum = 0 // The sum of the integers entered by the user.

http://math.hws.edu/javanotes/c3/s2.html
http://math.hws.edu/javanotes/c3/s1.html

Let count = 0 // The number of integers entered by the user.

while there are more integers to process:

 Read an integer

 Add it to the sum

 Count it

Divide sum by count to get the average

Print out the average

But how can we test whether there are more integers to process? A typical solution is to tell the

user to type in zero after all the data have been entered. This will work because we are assuming

that all the data are positive numbers, so zero is not a legal data value. The zero is not itself part

of the data to be averaged. It's just there to mark the end of the real data. A data value used in this

way is sometimes called a sentinel value. So now the test in the while loop becomes "while the

input integer is not zero". But there is another problem! The first time the test is evaluated,

before the body of the loop has ever been executed, no integer has yet been read. There is no

"input integer" yet, so testing whether the input integer is zero doesn't make sense. So, we have

to do something before the while loop to make sure that the test makes sense. Setting things up

so that the test in a while loop makes sense the first time it is executed is called priming the

loop. In this case, we can simply read the first integer before the beginning of the loop. Here is a

revised algorithm:

Let sum = 0

Let count = 0

Read an integer

while the integer is not zero:

 Add the integer to the sum

 Count it

 Read an integer

Divide sum by count to get the average

Print out the average

Notice that I've rearranged the body of the loop. Since an integer is read before the loop, the loop

has to begin by processing that integer. At the end of the loop, the computer reads a new integer.

The computer then jumps back to the beginning of the loop and tests the integer that it has just

read. Note that when the computer finally reads the sentinel value, the loop ends before the

sentinel value is processed. It is not added to the sum, and it is not counted. This is the way it's

supposed to work. The sentinel is not part of the data. The original algorithm, even if it could

have been made to work without priming, was incorrect since it would have summed and

counted all the integers, including the sentinel. (Since the sentinel is zero, the sum would still be

correct, but the count would be off by one. Such so-called off-by-one errors are very common.

Counting turns out to be harder than it looks!)

We can easily turn the algorithm into a complete program. Note that the program cannot use the

statement "average = sum/count;" to compute the average. Since sum and count are

both variables of type int, the value of sum/count is an integer. The average should be a real

number. We've seen this problem before: we have to convert one of the int values to a double to

force the computer to compute the quotient as a real number. This can be done by type-casting

one of the variables to type double. The type cast "(double)sum" converts the value of sum to a

real number, so in the program the average is computed as "average =

((double)sum) / count;". Another solution in this case would have been to declare sum

to be a variable of type double in the first place.

One other issue is addressed by the program: If the user enters zero as the first input value, there

are no data to process. We can test for this case by checking whether count is still equal to zero

after the while loop. This might seem like a minor point, but a careful programmer should

cover all the bases.

Here is the full source code for the program:

/**

 * This program reads a sequence of positive integers input

 * by the user, and it will print out the average of those

 * integers. The user is prompted to enter one integer at a

 * time. The user must enter a 0 to mark the end of the

 * data. (The zero is not counted as part of the data to

 * be averaged.) The program does not check whether the

 * user's input is positive, so it will actually add up

 * both positive and negative input values.

 */

public class ComputeAverage {

 public static void main(String[] args) {

 int inputNumber; // One of the integers input by the user.

 int sum; // The sum of the positive integers.

 int count; // The number of positive integers.

 double average; // The average of the positive integers.

 /* Initialize the summation and counting variables. */

 sum = 0;

 count = 0;

 /* Read and process the user's input. */

 System.out.print("Enter your first positive integer: ");

 inputNumber = TextIO.getlnInt();

 while (inputNumber != 0) {

 sum += inputNumber; // Add inputNumber to running sum.

 count++; // Count the input by adding 1 to

count.

 System.out.print("Enter your next positive integer, or 0

to end: ");

 inputNumber = TextIO.getlnInt();

 }

 /* Display the result. */

 if (count == 0) {

 System.out.println("You didn't enter any data!");

 }

 else {

 average = ((double)sum) / count;

 System.out.println();

 System.out.println("You entered " + count + " positive

integers.");

 System.out.printf("Their average is %1.3f.\n", average);

 }

 } // end main()

} // end class ComputeAverage

3.3.2 The do..while Statement

Sometimes it is more convenient to test the continuation condition at the end of a loop, instead of

at the beginning, as is done in the while loop. The do..while statement is very similar to the

while statement, except that the word "while," along with the condition that it tests, has been

moved to the end. The word "do" is added to mark the beginning of the loop. A do..while

statement has the form

do

 statement

while (boolean-expression);

or, since, as usual, the statement can be a block,

do {

 statements

} while (boolean-expression);

Note the semicolon, ';', at the very end. This semicolon is part of the statement, just as the

semicolon at the end of an assignment statement or declaration is part of the statement. Omitting

it is a syntax error. (More generally, every statement in Java ends either with a semicolon or a

right brace, '}'.)

To execute a do loop, the computer first executes the body of the loop -- that is, the statement or

statements inside the loop -- and then it evaluates the boolean expression. If the value of the

expression is true, the computer returns to the beginning of the do loop and repeats the

process; if the value is false, it ends the loop and continues with the next part of the program.

Since the condition is not tested until the end of the loop, the body of a do loop is always

executed at least once.

For example, consider the following pseudocode for a game-playing program. The do loop

makes sense here instead of a while loop because with the do loop, you know there will be at

least one game. Also, the test that is used at the end of the loop wouldn't even make sense at the

beginning:

do {

 Play a Game

 Ask user if he wants to play another game

 Read the user's response

} while (the user's response is yes);

Let's convert this into proper Java code. Since I don't want to talk about game playing at the

moment, let's say that we have a class named Checkers, and that the Checkers class

contains a static member subroutine named playGame() that plays one game of checkers

against the user. Then, the pseudocode "Play a game" can be expressed as the subroutine call

statement "Checkers.playGame();". We need a variable to store the user's response. The

TextIO class makes it convenient to use a boolean variable to store the answer to a yes/no

question. The input function TextIO.getlnBoolean() allows the user to enter the value as

"yes" or "no" (among other acceptable responses). "Yes" is considered to be true, and "no" is

considered to be false. So, the algorithm can be coded as

boolean wantsToContinue; // True if user wants to play again.

do {

 Checkers.playGame();

 System.out.print("Do you want to play again? ");

 wantsToContinue = TextIO.getlnBoolean();

} while (wantsToContinue == true);

When the value of the boolean variable is set to false, it is a signal that the loop should end.

When a boolean variable is used in this way -- as a signal that is set in one part of the program

and tested in another part -- it is sometimes called a flag or flag variable (in the sense of a signal

flag).

By the way, a more-than-usually-pedantic programmer would sneer at the test "while

(wantsToContinue == true)". This test is exactly equivalent to "while

(wantsToContinue)". Testing whether "wantsToContinue == true" is true amounts

to the same thing as testing whether "wantsToContinue" is true. A little less offensive is an

expression of the form "flag == false", where flag is a boolean variable. The value of

"flag == false" is exactly the same as the value of "!flag", where ! is the boolean

negation operator. So you can write "while (!flag)" instead of "while

(flag == false)", and you can write "if (!flag)" instead of

"if (flag == false)".

Although a do..while statement is sometimes more convenient than a while statement,

having two kinds of loops does not make the language more powerful. Any problem that can be

solved using do..while loops can also be solved using only while statements, and vice

versa. In fact, if doSomething represents any block of program code, then

do {

 doSomething

} while (boolean-expression);

has exactly the same effect as

doSomething

while (boolean-expression) {

 doSomething

}

Similarly,

while (boolean-expression) {

 doSomething

}

can be replaced by

if (boolean-expression) {

 do {

 doSomething

 } while (boolean-expression);

}

without changing the meaning of the program in any way.

3.3.3 break and continue

The syntax of the while and do..while loops allows you to test the continuation condition at

either the beginning of a loop or at the end. Sometimes, it is more natural to have the test in the

middle of the loop, or to have several tests at different places in the same loop. Java provides a

general method for breaking out of the middle of any loop. It's called the break statement,

which takes the form

break;

When the computer executes a break statement in a loop, it will immediately jump out of the

loop. It then continues on to whatever follows the loop in the program. Consider for example:

while (true) { // looks like it will run forever!

 System.out.print("Enter a positive number: ");

 N = TextIO.getlnInt();

 if (N > 0) // the input value is OK, so jump out of loop

 break;

 System.out.println("Your answer must be > 0.");

}

// continue here after break

If the number entered by the user is greater than zero, the break statement will be executed and

the computer will jump out of the loop. Otherwise, the computer will print out "Your answer

must be > 0." and will jump back to the start of the loop to read another input value.

The first line of this loop, "while (true)" might look a bit strange, but it's perfectly

legitimate. The condition in a while loop can be any boolean-valued expression. The computer

evaluates this expression and checks whether the value is true or false. The boolean literal

"true" is just a boolean expression that always evaluates to true. So "while (true)" can be

used to write an infinite loop, or one that will be terminated by a break statement.

A break statement terminates the loop that immediately encloses the break statement. It is

possible to have nested loops, where one loop statement is contained inside another. If you use a

break statement inside a nested loop, it will only break out of that loop, not out of the loop that

contains the nested loop. There is something called a labeled break statement that allows you to

specify which loop you want to break. This is not very common, so I will go over it quickly.

Labels work like this: You can put a label in front of any loop. A label consists of a simple

identifier followed by a colon. For example, a while with a label might look like

"mainloop: while...". Inside this loop you can use the labeled break statement

"break mainloop;" to break out of the labeled loop. For example, here is a code segment

that checks whether two strings, s1 and s2, have a character in common. If a common character

is found, the value of the flag variable nothingInCommon is set to false, and a labeled

break is used to end the processing at that point:

boolean nothingInCommon;

nothingInCommon = true; // Assume s1 and s2 have no chars in

common.

int i,j; // Variables for iterating through the chars in s1 and

s2.

i = 0;

bigloop: while (i < s1.length()) {

 j = 0;

 while (j < s2.length()) {

 if (s1.charAt(i) == s2.charAt(j)) { // s1 and s2 have a

common char.

 nothingInCommon = false;

 break bigloop; // break out of BOTH loops

 }

 j++; // Go on to the next char in s2.

 }

 i++; //Go on to the next char in s1.

}

The continue statement is related to break, but less commonly used. A continue

statement tells the computer to skip the rest of the current iteration of the loop. However, instead

of jumping out of the loop altogether, it jumps back to the beginning of the loop and continues

with the next iteration (including evaluating the loop's continuation condition to see whether any

further iterations are required). As with break, when a continue is in a nested loop, it will

continue the loop that directly contains it; a "labeled continue" can be used to continue the

containing loop instead.

break and continue can be used in while loops and do..while loops. They can also be

used in for loops, which are covered in the next section. In Section 3.6, we'll see that break

can also be used to break out of a switch statement. A break can occur inside an if

statement, but only if the if statement is nested inside a loop or inside a switch statement. In

that case, it does not mean to break out of the if. Instead, it breaks out of the loop or switch

statement that contains the if statement. The same consideration applies to continue

statements inside ifs.

The for Statement

WE TURN IN THIS SECTION to another type of loop, the for statement. Any for loop is

equivalent to some while loop, so the language doesn't get any additional power by having

for statements. But for a certain type of problem, a for loop can be easier to construct and

easier to read than the corresponding while loop. It's quite possible that in real programs, for

loops actually outnumber while loops.

3.4.1 For Loops

The for statement makes a common type of while loop easier to write. Many while loops have

the general form:

initialization

while (continuation-condition) {

 statements

 update

}

For example, consider this example, copied from an example in Section 3.2:

years = 0; // initialize the variable years

while (years < 5) { // condition for continuing loop

 interest = principal * rate; //

 principal += interest; // do three statements

 System.out.println(principal); //

 years++; // update the value of the variable, years

}

This loop can be written as the following equivalent for statement:

for (years = 0; years < 5; years++) {

 interest = principal * rate;

 principal += interest;

http://math.hws.edu/javanotes/c3/s4.html
http://math.hws.edu/javanotes/c3/s6.html
http://math.hws.edu/javanotes/c3/s2.html

 System.out.println(principal);

}

The initialization, continuation condition, and updating have all been combined in the first line of

the for loop. This keeps everything involved in the "control" of the loop in one place, which

helps make the loop easier to read and understand. The for loop is executed in exactly the same

way as the original code: The initialization part is executed once, before the loop begins. The

continuation condition is executed before each execution of the loop, and the loop ends when this

condition is false. The update part is executed at the end of each execution of the loop, just

before jumping back to check the condition.

The formal syntax of the for statement is as follows:

for (initialization; continuation-condition; update)

 statement

or, using a block statement:

for (initialization; continuation-condition; update) {

 statements

}

The continuation-condition must be a boolean-valued expression. The initialization is usually a

declaration or an assignment statement, but it can be any expression that would be allowed as a

statement in a program. The update can be any simple statement, but is usually an increment, a

decrement, or an assignment statement. Any of the three parts can be empty. If the continuation

condition is empty, it is treated as if it were "true," so the loop will be repeated forever or until

it ends for some other reason, such as a break statement. (Some people like to begin an infinite

loop with "for (;;)" instead of "while (true)".) Here's a flow control diagram for a for

statement:

Usually, the initialization part of a for statement assigns a value to some variable, and the

update changes the value of that variable with an assignment statement or with an increment or

decrement operation. The value of the variable is tested in the continuation condition, and the

loop ends when this condition evaluates to false. A variable used in this way is called a loop

control variable. In the example given above, the loop control variable was years.

Certainly, the most common type of for loop is the counting loop, where a loop control variable

takes on all integer values between some minimum and some maximum value. A counting loop

has the form

for (variable = min; variable <= max; variable++) {

 statements

}

where min and max are integer-valued expressions (usually constants). The variable takes on

the values min, min+1, min+2, ..., max. The value of the loop control variable is often used in

the body of the loop. The for loop at the beginning of this section is a counting loop in which

the loop control variable, years, takes on the values 1, 2, 3, 4, 5. Here is an even simpler

example, in which the numbers 1, 2, ..., 10 are displayed on standard output:

for (N = 1 ; N <= 10 ; N++)

 System.out.println(N);

For various reasons, Java programmers like to start counting at 0 instead of 1, and they tend to

use a "<" in the condition, rather than a "<=". The following variation of the above loop prints

out the ten numbers 0, 1, 2, ..., 9:

for (N = 0 ; N < 10 ; N++)

 System.out.println(N);

Using < instead of <= in the test, or vice versa, is a common source of off-by-one errors in

programs. You should always stop and think, Do I want the final value to be processed or not?

It's easy to count down from 10 to 1 instead of counting up. Just start with 10, decrement the

loop control variable instead of incrementing it, and continue as long as the variable is greater

than or equal to one.

for (N = 10 ; N >= 1 ; N--)

 System.out.println(N);

Now, in fact, the official syntax of a for statement actually allows both the initialization part

and the update part to consist of several expressions, separated by commas. So we can even

count up from 1 to 10 and count down from 10 to 1 at the same time!

for (i=1, j=10; i <= 10; i++, j--) {

 System.out.printf("%5d", i); // Output i in a 5-character wide

column.

 System.out.printf("%5d", j); // Output j in a 5-character column

 System.out.println(); // and end the line.

}

As a final introductory example, let's say that we want to use a for loop that prints out just the

even numbers between 2 and 20, that is: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. There are several ways

to do this. Just to show how even a very simple problem can be solved in many ways, here are

four different solutions (three of which would get full credit):

 (1) // There are 10 numbers to print.

 // Use a for loop to count 1, 2,

 // ..., 10. The numbers we want

 // to print are 2*1, 2*2, ... 2*10.

 for (N = 1; N <= 10; N++) {

 System.out.println(2*N);

 }

 (2) // Use a for loop that counts

 // 2, 4, ..., 20 directly by

 // adding 2 to N each time through

 // the loop.

 for (N = 2; N <= 20; N = N + 2) {

 System.out.println(N);

 }

 (3) // Count off all the numbers

 // 2, 3, 4, ..., 19, 20, but

 // only print out the numbers

 // that are even.

 for (N = 2; N <= 20; N++) {

 if (N % 2 == 0) // is N even?

 System.out.println(N);

 }

 (4) // Irritate the professor with

 // a solution that follows the

 // letter of this silly assignment

 // while making fun of it.

 for (N = 1; N <= 1; N++) {

 System.out.println("2 4 6 8 10 12 14 16 18 20");

 }

Perhaps it is worth stressing one more time that a for statement, like any statement except for a

variable declaration, never occurs on its own in a real program. A statement must be inside the

main routine of a program or inside some other subroutine. And that subroutine must be defined

inside a class. I should also remind you that every variable must be declared before it can be

used, and that includes the loop control variable in a for statement. In all the examples that you

have seen so far in this section, the loop control variables should be declared to be of type int. It

is not required that a loop control variable be an integer. Here, for example, is a for loop in

which the variable, ch, is of type char, using the fact that the ++ operator can be applied to

characters as well as to numbers:

// Print out the alphabet on one line of output.

char ch; // The loop control variable;

 // one of the letters to be printed.

for (ch = 'A'; ch <= 'Z'; ch++)

 System.out.print(ch);

System.out.println();

3.4.2 Example: Counting Divisors

Let's look at a less trivial problem that can be solved with a for loop. If N and D are positive

integers, we say that D is a divisor of N if the remainder when D is divided into N is zero.

(Equivalently, we could say that N is an even multiple of D.) In terms of Java programming, D is

a divisor of N if N % D is zero.

Let's write a program that inputs a positive integer, N, from the user and computes how many

different divisors N has. The numbers that could possibly be divisors of N are 1, 2, ..., N. To

compute the number of divisors of N, we can just test each possible divisor of N and count the

ones that actually do divide N evenly. In pseudocode, the algorithm takes the form

Get a positive integer, N, from the user

Let divisorCount = 0

for each number, testDivisor, in the range from 1 to N:

 if testDivisor is a divisor of N:

 Count it by adding 1 to divisorCount

Output the count

This algorithm displays a common programming pattern that is used when some, but not all, of a

sequence of items are to be processed. The general pattern is

for each item in the sequence:

 if the item passes the test:

 process it

The for loop in our divisor-counting algorithm can be translated into Java code as

for (testDivisor = 1; testDivisor <= N; testDivisor++) {

 if (N % testDivisor == 0)

 divisorCount++;

}

On a modern computer, this loop can be executed very quickly. It is not impossible to run it even

for the largest legal int value, 2147483647. (If you wanted to run it for even larger values, you

could use variables of type long rather than int.) However, it does take a significant amount of

time for very large numbers. So when I implemented this algorithm, I decided to output a dot

every time the computer has tested one million possible divisors. In the improved version of the

program, there are two types of counting going on. We have to count the number of divisors and

we also have to count the number of possible divisors that have been tested. So the program

needs two counters. When the second counter reaches 1000000, the program outputs a '.' and

resets the counter to zero so that we can start counting the next group of one million. Reverting

to pseudocode, the algorithm now looks like

Get a positive integer, N, from the user

Let divisorCount = 0 // Number of divisors found.

Let numberTested = 0 // Number of possible divisors tested

 // since the last period was output.

for each number, testDivisor, in the range from 1 to N:

 if testDivisor is a divisor of N:

 Count it by adding 1 to divisorCount

 Add 1 to numberTested

 if numberTested is 1000000:

 print out a '.'

 Reset numberTested to 0

Output the count

Finally, we can translate the algorithm into a complete Java program:

/**

 * This program reads a positive integer from the user.

 * It counts how many divisors that number has, and

 * then it prints the result.

 */

public class CountDivisors {

 public static void main(String[] args) {

 int N; // A positive integer entered by the user.

 // Divisors of this number will be counted.

 int testDivisor; // A number between 1 and N that is a

 // possible divisor of N.

 int divisorCount; // Number of divisors of N that have been

found.

 int numberTested; // Used to count how many possible

divisors

 // of N have been tested. When the number

 // reaches 1000000, a period is output and

 // the value of numberTested is reset to

zero.

 /* Get a positive integer from the user. */

 while (true) {

 System.out.print("Enter a positive integer: ");

 N = TextIO.getlnInt();

 if (N > 0)

 break;

 System.out.println("That number is not positive. Please

try again.");

 }

 /* Count the divisors, printing a "." after every 1000000

tests. */

 divisorCount = 0;

 numberTested = 0;

 for (testDivisor = 1; testDivisor <= N; testDivisor++) {

 if (N % testDivisor == 0)

 divisorCount++;

 numberTested++;

 if (numberTested == 1000000) {

 System.out.print('.');

 numberTested = 0;

 }

 }

 /* Display the result. */

 System.out.println();

 System.out.println("The number of divisors of " + N

 + " is " + divisorCount);

 } // end main()

} // end class CountDivisors

3.4.3 Nested for Loops

Control structures in Java are statements that contain other, simpler statements. In particular,

control structures can contain control structures. You've already seen several examples of if

statements inside loops, and one example of a while loop inside another while, but any

combination of one control structure inside another is possible. We say that one structure is

nested inside another. You can even have multiple levels of nesting, such as a while loop inside

an if statement inside another while loop. The syntax of Java does not set a limit on the

number of levels of nesting. As a practical matter, though, it's difficult to understand a program

that has more than a few levels of nesting.

Nested for loops arise naturally in many algorithms, and it is important to understand how they

work. Let's look at a couple of examples. First, consider the problem of printing out a

multiplication table like this one:

 1 2 3 4 5 6 7 8 9 10 11 12

 2 4 6 8 10 12 14 16 18 20 22 24

 3 6 9 12 15 18 21 24 27 30 33 36

 4 8 12 16 20 24 28 32 36 40 44 48

 5 10 15 20 25 30 35 40 45 50 55 60

 6 12 18 24 30 36 42 48 54 60 66 72

 7 14 21 28 35 42 49 56 63 70 77 84

 8 16 24 32 40 48 56 64 72 80 88 96

 9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120

11 22 33 44 55 66 77 88 99 110 121 132

12 24 36 48 60 72 84 96 108 120 132 144

The data in the table are arranged into 12 rows and 12 columns. The process of printing them out

can be expressed in a pseudocode algorithm as

for each rowNumber = 1, 2, 3, ..., 12:

 Print the first twelve multiples of rowNumber on one line

 Output a carriage return

The first step in the for loop can itself be expressed as a for loop. We can expand "Print the

first twelve multiples of rowNumber on one line" as:

for N = 1, 2, 3, ..., 12:

 Print N * rowNumber

so a refined algorithm for printing the table has one for loop nested inside another:

for each rowNumber = 1, 2, 3, ..., 12:

 for N = 1, 2, 3, ..., 12:

 Print N * rowNumber

 Output a carriage return

We want to print the output in neat columns, with each output number taking up four spaces.

This can be done using formatted output with format specifier %4d. Assuming that rowNumber

and N have been declared to be variables of type int, the algorithm can be expressed in Java as

for (rowNumber = 1; rowNumber <= 12; rowNumber++) {

 for (N = 1; N <= 12; N++) {

 // print in 4-character columns

 System.out.printf("%4d", N * rowNumber); // No carriage

return !

 }

 System.out.println(); // Add a carriage return at end of the

line.

}

This section has been weighed down with lots of examples of numerical processing. For our next

example, let's do some text processing. Consider the problem of finding which of the 26 letters

of the alphabet occur in a given string. For example, the letters that occur in "Hello World" are

D, E, H, L, O, R, and W. More specifically, we will write a program that will list all the letters

contained in a string and will also count the number of different letters. The string will be input

by the user. Let's start with a pseudocode algorithm for the program.

Ask the user to input a string

Read the response into a variable, str

Let count = 0 (for counting the number of different letters)

for each letter of the alphabet:

 if the letter occurs in str:

 Print the letter

 Add 1 to count

Output the count

Since we want to process the entire line of text that is entered by the user, we'll use

TextIO.getln() to read it. The line of the algorithm that reads "for each letter of the

alphabet" can be expressed as "for (letter='A'; letter<='Z'; letter++)". But

the if statement inside the for loop needs still more thought before we can write the program.

How do we check whether the given letter, letter, occurs in str? One idea is to look at each

character in the string in turn, and check whether that character is equal to letter. We can get

the i-th character of str with the function call str.charAt(i), where i ranges from 0 to

str.length() - 1.

One more difficulty: A letter such as 'A' can occur in str in either upper or lower case, 'A' or 'a'.

We have to check for both of these. But we can avoid this difficulty by converting str to upper

case before processing it. Then, we only have to check for the upper case letter. We can now

flesh out the algorithm fully:

Ask the user to input a string

Read the response into a variable, str

Convert str to upper case

Let count = 0

for letter = 'A', 'B', ..., 'Z':

 for i = 0, 1, ..., str.length()-1:

 if letter == str.charAt(i):

 Print letter

 Add 1 to count

 break // jump out of the loop, to avoid counting

letter twice

Output the count

Note the use of break in the nested for loop. It is required to avoid printing or counting a

given letter more than once (in the case where it occurs more than once in the string). The

break statement breaks out of the inner for loop, but not the outer for loop. Upon executing

the break, the computer continues the outer loop with the next value of letter. You should

try to figure out exactly what count would be at the end of this program, if the break

statement were omitted. Here is the complete program:

/**

 * This program reads a line of text entered by the user.

 * It prints a list of the letters that occur in the text,

 * and it reports how many different letters were found.

 */

public class ListLetters {

 public static void main(String[] args) {

 String str; // Line of text entered by the user.

 int count; // Number of different letters found in str.

 char letter; // A letter of the alphabet.

 System.out.println("Please type in a line of text.");

 str = TextIO.getln();

 str = str.toUpperCase();

 count = 0;

 System.out.println("Your input contains the following

letters:");

 System.out.println();

 System.out.print(" ");

 for (letter = 'A'; letter <= 'Z'; letter++) {

 int i; // Position of a character in str.

 for (i = 0; i < str.length(); i++) {

 if (letter == str.charAt(i)) {

 System.out.print(letter);

 System.out.print(' ');

 count++;

 break;

 }

 }

 }

 System.out.println();

 System.out.println();

 System.out.println("There were " + count + " different

letters.");

 } // end main()

} // end class ListLetters

In fact, there is actually an easier way to determine whether a given letter occurs in a string, str.

The built-in function str.indexOf(letter) will return -1 if letter does not occur in

the string. It returns a number greater than or equal to zero if it does occur. So, we could check

whether letter occurs in str simply by checking

"if (str.indexOf(letter) >= 0)". If we used this technique in the above program,

we wouldn't need a nested for loop. This gives you a preview of how subroutines can be used to

deal with complexity.

The if Statement

THE FIRST OF THE TWO BRANCHING STATEMENTS in Java is the if statement, which

you have already seen in Section 3.1. It takes the form

if (boolean-expression)

 statement-1

else

 statement-2

As usual, the statements inside an if statement can be blocks. The if statement represents a

two-way branch. The else part of an if statement -- consisting of the word "else" and the

statement that follows it -- can be omitted.

3.5.1 The Dangling else Problem

Now, an if statement is, in particular, a statement. This means that either statement-1 or

statement-2 in the above if statement can itself be an if statement. A problem arises, however,

if statement-1 is an if statement that has no else part. This special case is effectively

forbidden by the syntax of Java. Suppose, for example, that you type

if (x > 0)

 if (y > 0)

 System.out.println("First case");

else

 System.out.println("Second case");

http://math.hws.edu/javanotes/c3/s1.html

Now, remember that the way you've indented this doesn't mean anything at all to the computer.

You might think that the else part is the second half of your "if (x > 0)" statement, but

the rule that the computer follows attaches the else to "if (y > 0)", which is closer. That

is, the computer reads your statement as if it were formatted:

if (x > 0)

 if (y > 0)

 System.out.println("First case");

 else

 System.out.println("Second case");

You can force the computer to use the other interpretation by enclosing the nested if in a block:

if (x > 0) {

 if (y > 0)

 System.out.println("First case");

}

else

 System.out.println("Second case");

These two if statements have different meanings: In the case when x <= 0, the first statement

doesn't print anything, but the second statement prints "Second case".

3.5.2 Multiway Branching

Much more interesting than this technicality is the case where statement-2, the else part of the

if statement, is itself an if statement. The statement would look like this (perhaps without the

final else part):

if (boolean-expression-1)

 statement-1

else

 if (boolean-expression-2)

 statement-2

 else

 statement-3

However, since the computer doesn't care how a program is laid out on the page, this is almost

always written in the format:

if (boolean-expression-1)

 statement-1

else if (boolean-expression-2)

 statement-2

else

 statement-3

You should think of this as a single statement representing a three-way branch. When the

computer executes this, one and only one of the three statements -- statement-1, statement-2, or

statement-3 -- will be executed. The computer starts by evaluating boolean-expression-1. If it is

true, the computer executes statement-1 and then jumps all the way to the end of the outer if

statement, skipping the other two statements. If boolean-expression-1 is false, the computer

skips statement-1 and executes the second, nested if statement. To do this, it tests the value of

boolean-expression-2 and uses it to decide between statement-2 and statement-3.

Here is an example that will print out one of three different messages, depending on the value of

a variable named temperature:

if (temperature < 50)

 System.out.println("It's cold.");

else if (temperature < 80)

 System.out.println("It's nice.");

else

 System.out.println("It's hot.");

If temperature is, say, 42, the first test is true. The computer prints out the message "It's

cold", and skips the rest -- without even evaluating the second condition. For a temperature of

75, the first test is false, so the computer goes on to the second test. This test is true, so the

computer prints "It's nice" and skips the rest. If the temperature is 173, both of the tests evaluate

to false, so the computer says "It's hot" (unless its circuits have been fried by the heat, that is).

You can go on stringing together "else-if's" to make multi-way branches with any number of

cases:

if (test-1)

 statement-1

else if (test-2)

 statement-2

else if (test-3)

 statement-3

 .

 . // (more cases)

 .

else if (test-N)

 statement-N

else

 statement-(N+1)

The computer evaluates the tests, which are boolean expressions, one after the other until it

comes to one that is true. It executes the associated statement and skips the rest. If none of the

boolean expressions evaluate to true, then the statement in the else part is executed. This

statement is called a multi-way branch because one and only one of the statements will be

executed. The final else part can be omitted. In that case, if all the boolean expressions are

false, none of the statements are executed. Of course, each of the statements can be a block,

consisting of a number of statements enclosed between { and }. Admittedly, there is lot of syntax

here; as you study and practice, you'll become comfortable with it. It might be useful to look at a

flow control diagram for the general "if..else if" statement shown above:

3.5.3 If Statement Examples

As an example of using if statements, let's suppose that x, y, and z are variables of type int,

and that each variable has already been assigned a value. Consider the problem of printing out

the values of the three variables in increasing order. For examples, if the values are 42, 17, and

20, then the output should be in the order 17, 20, 42.

One way to approach this is to ask, where does x belong in the list? It comes first if it's less than

both y and z. It comes last if it's greater than both y and z. Otherwise, it comes in the middle.

We can express this with a 3-way if statement, but we still have to worry about the order in

which y and z should be printed. In pseudocode,

if (x < y && x < z) {

 output x, followed by y and z in their correct order

}

else if (x > y && x > z) {

 output y and z in their correct order, followed by x

}

else {

 output x in between y and z in their correct order

}

Determining the relative order of y and z requires another if statement, so this becomes

if (x < y && x < z) { // x comes first

 if (y < z)

 System.out.println(x + " " + y + " " + z);

 else

 System.out.println(x + " " + z + " " + y);

}

else if (x > y && x > z) { // x comes last

 if (y < z)

 System.out.println(y + " " + z + " " + x);

 else

 System.out.println(z + " " + y + " " + x);

}

else { // x in the middle

 if (y < z)

 System.out.println(y + " " + x + " " + z);

 else

 System.out.println(z + " " + x + " " + y);

}

You might check that this code will work correctly even if some of the values are the same. If the

values of two variables are the same, it doesn't matter which order you print them in.

Note, by the way, that even though you can say in English "if x is less than y and z," you can't

say in Java "if (x < y && z)". The && operator can only be used between boolean values,

so you have to make separate tests, x<y and x<z, and then combine the two tests with &&.

There is an alternative approach to this problem that begins by asking, "which order should x

and y be printed in?" Once that's known, you only have to decide where to stick in z. This line

of thought leads to different Java code:

if (x < y) { // x comes before y

 if (z < x) // z comes first

 System.out.println(z + " " + x + " " + y);

 else if (z > y) // z comes last

 System.out.println(x + " " + y + " " + z);

 else // z is in the middle

 System.out.println(x + " " + z + " " + y);

}

else { // y comes before x

 if (z < y) // z comes first

 System.out.println(z + " " + y + " " + x);

 else if (z > x) // z comes last

 System.out.println(y + " " + x + " " + z);

 else // z is in the middle

 System.out.println(y + " " + z + " " + x);

}

Once again, we see how the same problem can be solved in many different ways. The two

approaches to this problem have not exhausted all the possibilities. For example, you might start

by testing whether x is greater than y. If so, you could swap their values. Once you've done that,

you know that x should be printed before y.

Finally, let's write a complete program that uses an if statement in an interesting way. I want a

program that will convert measurements of length from one unit of measurement to another, such

as miles to yards or inches to feet. So far, the problem is extremely under-specified. Let's say that

the program will only deal with measurements in inches, feet, yards, and miles. It would be easy

to extend it later to deal with other units. The user will type in a measurement in one of these

units, such as "17 feet" or "2.73 miles". The output will show the length in terms of each of the

four units of measure. (This is easier than asking the user which units to use in the output.) An

outline of the process is

Read the user's input measurement and units of measure

Express the measurement in inches, feet, yards, and miles

Display the four results

The program can read both parts of the user's input from the same line by using

TextIO.getDouble() to read the numerical measurement and TextIO.getlnWord() to

read the unit of measure. The conversion into different units of measure can be simplified by first

converting the user's input into inches. From there, the number of inches can easily be converted

into feet, yards, and miles. Before converting into inches, we have to test the input to determine

which unit of measure the user has specified:

Let measurement = TextIO.getDouble()

Let units = TextIO.getlnWord()

if the units are inches

 Let inches = measurement

else if the units are feet

 Let inches = measurement * 12 // 12 inches per foot

else if the units are yards

 Let inches = measurement * 36 // 36 inches per yard

else if the units are miles

 Let inches = measurement * 12 * 5280 // 5280 feet per mile

else

 The units are illegal!

 Print an error message and stop processing

Let feet = inches / 12.0

Let yards = inches / 36.0

Let miles = inches / (12.0 * 5280.0)

Display the results

Since units is a String, we can use units.equals("inches") to check whether the

specified unit of measure is "inches". However, it would be nice to allow the units to be specified

as "inch" or abbreviated to "in". To allow these three possibilities, we can check if

(units.equals("inches") || units.equals("inch") ||

units.equals("in")). It would also be nice to allow upper case letters, as in "Inches" or

"IN". We can do this by converting units to lower case before testing it or by substituting the

function units.equalsIgnoreCase for units.equals.

In my final program, I decided to make things more interesting by allowing the user to repeat the

process of entering a measurement and seeing the results of the conversion for each

measurement. The program will end only when the user inputs 0. To program that, I just had to

wrap the above algorithm inside a while loop, and make sure that the loop ends when the user

inputs a 0. Here's the complete program:

/**

 * This program will convert measurements expressed in inches,

 * feet, yards, or miles into each of the possible units of

 * measure. The measurement is input by the user, followed by

 * the unit of measure. For example: "17 feet", "1 inch", or

 * "2.73 mi". Abbreviations in, ft, yd, and mi are accepted.

 * The program will continue to read and convert measurements

 * until the user enters an input of 0.

 */

 public class LengthConverter {

 public static void main(String[] args) {

 double measurement; // Numerical measurement, input by

user.

 String units; // The unit of measure for the input,

also

 // specified by the user.

 double inches, feet, yards, miles; // Measurement expressed

in

 // each possible unit

of

 // measure.

 System.out.println("Enter measurements in inches, feet,

yards, or miles.");

 System.out.println("For example: 1 inch 17 feet 2.73

miles");

 System.out.println("You can use abbreviations: in ft yd

mi");

 System.out.println("I will convert your input into the other

units");

 System.out.println("of measure.");

 System.out.println();

 while (true) {

 /* Get the user's input, and convert units to lower case.

*/

 System.out.print("Enter your measurement, or 0 to end:

");

 measurement = TextIO.getDouble();

 if (measurement == 0)

 break; // Terminate the while loop.

 units = TextIO.getlnWord();

 units = units.toLowerCase(); // convert units to lower

case

 /* Convert the input measurement to inches. */

 if (units.equals("inch") || units.equals("inches")

 || units.equals("in")) {

 inches = measurement;

 }

 else if (units.equals("foot") || units.equals("feet")

 || units.equals("ft")) {

 inches = measurement * 12;

 }

 else if (units.equals("yard") || units.equals("yards")

 || units.equals("yd")) {

 inches = measurement * 36;

 }

 else if (units.equals("mile") || units.equals("miles")

 || units.equals("mi"))

{

 inches = measurement * 12 * 5280;

 }

 else {

 System.out.println("Sorry, but I don't understand \""

 + units +

"\".");

 continue; // back to start of while loop

 }

 /* Convert measurement in inches to feet, yards, and

miles. */

 feet = inches / 12;

 yards = inches / 36;

 miles = inches / (12*5280);

 /* Output measurement in terms of each unit of measure.

*/

 System.out.println();

 System.out.println("That's equivalent to:");

 System.out.printf("%12.5g", inches);

 System.out.println(" inches");

 System.out.printf("%12.5g", feet);

 System.out.println(" feet");

 System.out.printf("%12.5g", yards);

 System.out.println(" yards");

 System.out.printf("%12.5g", miles);

 System.out.println(" miles");

 System.out.println();

 } // end while

 System.out.println();

 System.out.println("OK! Bye for now.");

 } // end main()

 } // end class LengthConverter

(Note that this program uses formatted output with the "g" format specifier. In this program, we

have no control over how large or how small the numbers might be. It could easily make sense

for the user to enter very large or very small measurements. The "g" format will print a real

number in exponential form if it is very large or very small, and in the usual decimal form

otherwise. Remember that in the format specification %12.5g, the 5 is the total number of

significant digits that are to be printed, so we will always get the same number of significant

digits in the output, no matter what the size of the number. If we had used an "f" format specifier

such as %12.5f, the output would be in decimal form with 5 digits after the decimal point. This

would print the number 0.000000000745482 as 0.00000, with no significant digits at all! With

the "g" format specifier, the output would be 7.4549e-10.)

3.5.4 The Empty Statement

As a final note in this section, I will mention one more type of statement in Java: the empty

statement. This is a statement that consists simply of a semicolon and which tells the computer to

do nothing. The existence of the empty statement makes the following legal, even though you

would not ordinarily see a semicolon after a } :

if (x < 0) {

 x = -x;

};

The semicolon is legal after the }, but the computer considers it to be an empty statement, not

part of the if statement. Occasionally, you might find yourself using the empty statement when

what you mean is, in fact, "do nothing." For example, the rather contrived if statement

if (done)

 ; // Empty statement

else

 System.out.println("Not done yet.");

does nothing when the boolean variable done is true, and prints out "Not done yet" when it is

false. You can't just leave out the semicolon in this example, since Java syntax requires an actual

statement between the if and the else. I prefer, though, to use an empty block, consisting

of { and } with nothing between, for such cases.

Occasionally, stray empty statements can cause annoying, hard-to-find errors in a program. For

example, the following program segment prints out "Hello" just once, not ten times:

for (int i = 0; i < 10; i++);

 System.out.println("Hello");

Why? Because the ";" at the end of the first line is a statement, and it is this empty statement that

is executed ten times. The System.out.println statement is not really inside the for

statement at all, so it is executed just once, after the for loop has completed. The for loop just

does nothing, ten times!

THE SECOND BRANCHING STATEMENT in Java is the switch statement, which is

introduced in this section. The switch statement is used far less often than the if statement,

but it is sometimes useful for expressing a certain type of multiway branch.

3.6.1 The Basic switch Statement

A switch statement allows you to test the value of an expression and, depending on that value, to

jump directly to some location within the switch statement. Only expressions of certain types can

be used. The value of the expression can be one of the primitive integer types int, short, or byte.

It can be the primitive char type. It can be String. Or it can be an enum type (see Subsection 2.3.4

for an introduction to enums). In particular, note that the expression cannot be a double or float

value.

The positions within a switch statement to which it can jump are marked with case labels that

take the form: "case constant:". The constant here is a literal of the same type as the expression

in the switch. A case label marks the position the computer jumps to when the expression

evaluates to the given constant value. As the final case in a switch statement you can, optionally,

use the label "default:", which provides a default jump point that is used when the value of the

expression is not listed in any case label.

A switch statement, as it is most often used, has the form:

switch (expression) {

 case constant-1:

 statements-1

 break;

 case constant-2:

 statements-2

 break;

 .

 . // (more cases)

 .

 case constant-N:

 statements-N

 break;

 default: // optional default case

 statements-(N+1)

} // end of switch statement

http://math.hws.edu/javanotes/c2/s3.html#basics.3.4

This has exactly the same effect as the following multiway if statement, but the switch

statement can be more efficient because the computer can evaluate one expression and jump

directly to the correct case, whereas in the if statement, the computer must evaluate up to N

expressions before it knows which set of statements to execute:

if (expression == constant-1) { // but use .equals for String!!

 statements-2

}

else if (expression == constant-2) {

 statements-3

}

else

 .

 .

 .

else if (expression == constant-N) {

 statements-N

}

else {

 statements-(N+1)

}

The break statements in the switch are technically optional. The effect of a break is to

make the computer jump past the end of the switch statement, skipping over all the remaining

cases. If you leave out the break statement, the computer will just forge ahead after completing

one case and will execute the statements associated with the next case label. This is rarely what

you want, but it is legal. (I will note here -- although you won't understand it until you get to the

next chapter -- that inside a subroutine, the break statement is sometimes replaced by a

return statement, which terminates the subroutine as well as the switch.)

Introduction to Exceptions and try..catch

IN ADDITION TO THE CONTROL structures that determine the normal flow of control in a

program, Java has a way to deal with "exceptional" cases that throw the flow of control off its

normal track. When an error occurs during the execution of a program, the default behavior is to

terminate the program and to print an error message. However, Java makes it possible to "catch"

such errors and program a response different from simply letting the program crash. This is done

with the try..catch statement. In this section, we will take a preliminary and incomplete look the

try..catch statement, leaving out a lot of the rather complex syntax of this statement. Error

handling is a complex topic, which we will return to in Chapter 8, and we will cover the full

syntax of try..catch at that time.

http://math.hws.edu/javanotes/c8/index.html

3.7.1 Exceptions

The term exception is used to refer to the type of error that one might want to handle with a

try..catch. An exception is an exception to the normal flow of control in the program. The

term is used in preference to "error" because in some cases, an exception might not be considered

to be an error at all. You can sometimes think of an exception as just another way to organize a

program.

Exceptions in Java are represented as objects of type Exception. Actual exceptions are usually

defined by subclasses of Exception. Different subclasses represent different types of exceptions.

We will look at only two types of exception in this section: NumberFormatException and

IllegalArgumentException.

A NumberFormatException can occur when an attempt is made to convert a string into a

number. Such conversions are done by the functions Integer.parseInt and

Double.parseDouble. (See Subsection 2.5.7.) Consider the function call

Integer.parseInt(str) where str is a variable of type String. If the value of str is the

string "42", then the function call will correctly convert the string into the int 42. However, if

the value of str is, say, "fred", the function call will fail because "fred" is not a legal

string representation of an int value. In this case, an exception of type NumberFormatException

occurs. If nothing is done to handle the exception, the program will crash.

An IllegalArgumentException can occur when an illegal value is passed as a parameter to a

subroutine. For example, if a subroutine requires that a parameter be greater than or equal to

zero, an IllegalArgumentException might occur when a negative value is passed to the

subroutine. How to respond to the illegal value is up to the person who wrote the subroutine, so

we can't simply say that every illegal parameter value will result in an

IllegalArgumentException. However, it is a common response.

3.7.2 try..catch

When an exception occurs, we say that the exception is "thrown". For example, we say that

Integer.parseInt(str) throws an exception of type NumberFormatException when the

value of str is illegal. When an exception is thrown, it is possible to "catch" the exception and

prevent it from crashing the program. This is done with a try..catch statement. In simplified form,

the syntax for a try..catch can be:

try {

 statements-1

}

catch (exception-class-name variable-name) {

 statements-2

}

http://math.hws.edu/javanotes/c2/s5.html#basics.5.7

The exception-class-name could be NumberFormatException, IllegalArgumentException, or

some other exception class. When the computer executes this try..catch statement, it

executes the statements in the try part. If no exception occurs during the execution of

statements-1, then the computer just skips over the catch part and proceeds with the rest of the

program. However, if an exception of type exception-class-name occurs during the execution of

statements-1, the computer immediately jumps from the point where the exception occurs to the

catch part and executes statements-2, skipping any remaining statements in statements-1.

Note that only one type of exception is caught; if some other type of exception occurs during the

execution of statements-1, it will crash the program as usual.

During the execution of statements-2, the variable-name represents the exception object, so

that you can, for example, print it out. The exception object contains information about the cause

of the exception. This includes an error message, which will be displayed if you print out the

exception object.

After the end of the catch part, the computer proceeds with the rest of the program; the

exception has been caught and handled and does not crash the program.

By the way, note that the braces, { and }, are part of the syntax of the try..catch statement.

They are required even if there is only one statement between the braces. This is different from

the other statements we have seen, where the braces around a single statement are optional.

As an example, suppose that str is a variable of type String whose value might or might not

represent a legal real number. Then we could say:

double x;

try {

 x = Double.parseDouble(str);

 System.out.println("The number is " + x);

}

catch (NumberFormatException e) {

 System.out.println("Not a legal number.");

 x = Double.NaN;

}

If an error is thrown by the call to Double.parseDouble(str), then the output statement

in the try part is skipped, and the statement in the catch part is executed. (In this example, I

set x to be the value Double.NaN when an exception occurs. Double.NaN is the special

"not-a-number" value for type double.)

It's not always a good idea to catch exceptions and continue with the program. Often that can

just lead to an even bigger mess later on, and it might be better just to let the exception crash the

program at the point where it occurs. However, sometimes it's possible to recover from an error.

Suppose, for example, we want a program that will find the average of a sequence of real

numbers entered by the user, and we want the user to signal the end of the sequence by entering a

blank line. (This is similar to the sample program ComputeAverage.java from Section 3.3, but in

http://math.hws.edu/javanotes/source/chapter3/ComputeAverage.java
http://math.hws.edu/javanotes/c3/s3.html

that program the user entered a zero to signal end-of-input.) If we use TextIO.getlnInt()

to read the user's input, we will have no way of detecting the blank line, since that function

simply skips over blank lines. A solution is to use TextIO.getln() to read the user's input.

This allows us to detect a blank input line, and we can convert non-blank inputs to numbers

using Double.parseDouble. And we can use try..catch to avoid crashing the program

when the user's input is not a legal number. Here's the program:

public class ComputeAverage2 {

 public static void main(String[] args) {

 String str; // The user's input.

 double number; // The input converted into a number.

 double total; // The total of all numbers entered.

 double avg; // The average of the numbers.

 int count; // The number of numbers entered.

 total = 0;

 count = 0;

 System.out.println("Enter your numbers, press return to

end.");

 while (true) {

 System.out.print("? ");

 str = TextIO.getln();

 if (str.equals("")) {

 break; // Exit the loop, since the input line was

blank.

 }

 try {

 number = Double.parseDouble(str);

 // If an error occurs, the next 2 lines are skipped!

 total = total + number;

 count = count + 1;

 }

 catch (NumberFormatException e) {

 System.out.println("Not a legal number! Try

again.");

 }

 }

 avg = total/count;

 System.out.printf("The average of %d numbers is %1.6g%n",

count, avg);

 }

}

3.7.3 Exceptions in TextIO

When TextIO reads a numeric value from the user, it makes sure that the user's response is

legal, using a technique similar to the while loop and try..catch in the previous example.

However, TextIO can read data from other sources besides the user. (See Subsection 2.4.4.)

When it is reading from a file, there is no reasonable way for TextIO to recover from an illegal

value in the input, so it responds by throwing an exception. To keep things simple, TextIO only

http://math.hws.edu/javanotes/c2/s4.html#basics.4.4

throws exceptions of type IllegalArgumentException, no matter what type of error it encounters.

For example, an exception will occur if an attempt is made to read from a file after all the data in

the file has already been read. In TextIO, the exception is of type IllegalArgumentException. If

you have a better response to file errors than to let the program crash, you can use a

try..catch to catch exceptions of type IllegalArgumentException.

As an example, we will look at yet another number-averaging program. In this case, we will read

the numbers from a file. Assume that the file contains nothing but real numbers, and we want a

program that will read the numbers and find their sum and their average. Since it is unknown

how many numbers are in the file, there is the question of when to stop reading. One approach is

simply to try to keep reading indefinitely. When the end of the file is reached, an exception

occurs. This exception is not really an error -- it's just a way of detecting the end of the data, so

we can catch the exception and finish up the program. We can read the data in a

while (true) loop and break out of the loop when an exception occurs. This is an example

of the somewhat unusual technique of using an exception as part of the expected flow of control

in a program.

To read from the file, we need to know the file's name. To make the program more general, we

can let the user enter the file name, instead of hard-coding a fixed file name in the program.

However, it is possible that the user will enter the name of a file that does not exist. When we use

TextIO.readfile to open a file that does not exist, an exception of type

IllegalArgumentException occurs. We can catch this exception and ask the user to enter a

different file name. Here is a complete program that uses all these ideas:

/**

 * This program reads numbers from a file. It computes the sum and

 * the average of the numbers that it reads. The file should

contain

 * nothing but numbers of type double; if this is not the case, the

 * output will be the sum and average of however many numbers were

 * successfully read from the file. The name of the file will be

 * input by the user.

 */

public class AverageNumbersFromFile {

 public static void main(String[] args) {

 while (true) {

 String fileName; // The name of the file, to be input by

the user.

 System.out.print("Enter the name of the file: ");

 fileName = TextIO.getln();

 try {

 TextIO.readFile(fileName); // Try to open the file

for input.

 break; // If that succeeds, break out of the loop.

 }

 catch (IllegalArgumentException e) {

 System.out.println("Can't read from the file \"" +

fileName + "\".");

 System.out.println("Please try again.\n");

 }

 }

 /* At this point, TextIO is reading from the file. */

 double number; // A number read from the data file.

 double sum; // The sum of all the numbers read so far.

 int count; // The number of numbers that were read.

 sum = 0;

 count = 0;

 try {

 while (true) { // Loop ends when an exception occurs.

 number = TextIO.getDouble();

 count++; // This is skipped when the exception occurs

 sum += number;

 }

 }

 catch (IllegalArgumentException e) {

 // We expect this to occur when the end-of-file is

encountered.

 // We don't consider this to be an error, so there is

nothing to do

 // in this catch clause. Just proceed with the rest of

the program.

 }

 // At this point, we've read the entire file.

 System.out.println();

 System.out.println("Number of data values read: " + count);

 System.out.println("The sum of the data values: " + sum);

 if (count == 0)

 System.out.println("Can't compute an average of 0

values.");

 else

 System.out.println("The average of the values: " +

(sum/count));

3.8.1 Creating and Using Arrays

A data structure consists of a number of data items chunked together so that they can be treated

as a unit. An array is a data structure in which the items are arranged as a numbered sequence, so

that each individual item can be referred to by its position number. In Java -- but not in other

programming languages -- all the items must be of the same type, and the numbering always

starts at zero. You will need to learn several new terms to talk about arrays: The number of items

in an array is called the length of the array. The type of the individual items in an array is called

the base type of the array. And the position number of an item in an array is called the index of

that item.

Suppose that you want to write a program that will process the names of, say, one thousand

people. You will need a way to deal with all that data. Before you knew about arrays, you might

have thought that the program would need a thousand variables to hold the thousand names, and

if you wanted to print out all the names, you would need a thousand print statements. Clearly,

that would be ridiculous! In reality, you can put all the names into an array. The array is a

represented by a single variable, but it holds the entire list of names. The length of the array

would be 1000, since there are 1000 individual names. The base type of the array would be

String since the items in the array are strings. The first name would be at index 0 in the array, the

second name at index 1, and so on, up to the thousandth name at index 999.

The base type of an array can be any Java type, but for now, we will stick to arrays whose base

type is String or one of the eight primitive types. If the base type of an array is int, it is referred

to as an "array of ints." An array with base type String is referred to as an "array of Strings."

However, an array is not, properly speaking, a list of integers or strings or other values. It is

better thought of as a list of variables of type int, or a list of variables of type String, or of some

other type. As always, there is some potential for confusion between the two uses of a variable:

as a name for a memory location and as a name for the value stored in that memory location.

Each position in an array acts as a variable. Each position can hold a value of a specified type

(the base type of the array), just as a variable can hold a value. The value can be changed at any

time, just as the value of a variable can be changed. The items in an array -- really, the individual

variables that make up the array -- are more often referred to as the elements of the array.

As I mentioned above, when you use an array in a program, you can use a variable to refer to

array as a whole. But you often need to refer to the individual elements of the array. The name

for an element of an array is based on the name for the array and the index number of the

element. The syntax for referring to an element looks, for example, like this: namelist[7].

Here, namelist is the variable that names the array as a whole, and namelist[7] refers to

the element at index 7 in that array. That is, to refer to an element of an array, you use the array

name, followed by element index enclosed in square brackets. An element name of this form can

be used like any other variable: You can assign a value to it, print it out, use it in an expression.

An array also contains a kind of variable representing its length. For example, you can refer to

the length of the array namelist as namelist.length. However, you cannot assign a

value to namelist.length, since the length of an array cannot be changed.

Before you can use a variable to refer to an array, that variable must be declared, and it must

have a type. For an array of Strings, for example, the type for the array variable would be

String[], and for an array of ints, it would be int[]. In general, an array type consists of the

base type of the array followed by a pair of empty square brackets. Array types can be used to

declare variables; for example,

String[] namelist;

int[] A;

double[] prices;

and variables declared in this way can refer to arrays. However, declaring a variable does not

make the actual array. Like all variables, an array variable has to be assigned a value before it

can be used. In this case, the value is an array. Arrays have to be created using a special syntax.

(The syntax is related to the fact that arrays in Java are actually objects, but that doesn't need to

concern us here.) Arrays are created with an operator named new. Here are some examples:

namelist = new String[1000];

A = new int[5];

prices = new double[100];

The general syntax is

array-variable = new base-type[array-length];

The length of the array can be given as either an integer or an integer-valued expression. For

example, after the assignment statement "A = new int[5];", A is an array containing the

five integer elements A[0], A[1], A[2], A[3], and A[4]. Also, A.length would have the

value 5. It's useful to have a picture in mind:

When you create an array of int, each element of the array is automatically initialized to zero.

Any array of numbers is filled with zeros when it is created. An array of boolean is filled with

the value false. And an array of char is filled with the character that has Unicode code number

zero. (For an array of String, the initial value is null, a special value used for objects that we

won't encounter officially until Section 5.1.)

3.8.2 Arrays and For Loops

A lot of the real power of arrays comes from the fact that the index of an element can be given

by an integer variable or even an integer-valued expression. For example, if list is an array

and i is a variable of type int, then you can use list[i] and even list[2*i+1] as variable

names. The meaning of list[i] depends on the value of i. This becomes especially useful

when we want to process all the elements of an array, since that can be done with a for loop.

For example, to print out all the items in an array, list, we can just write

int i; // the array index

for (i = 0; i < list.length; i++) {

 System.out.println(list[i]);

}

http://math.hws.edu/javanotes/c5/s1.html

The first time through the loop, i is 0, and list[i] refers to list[0]. So, it is the value

stored in the variable list[0] that is printed. The second time through the loop, i is 1, and the

value stored in list[1] is printed. The loop ends after printing the value of list[4], when i

becomes equal to 5 and the continuation condition "i < list.length" is no longer true.

This is a typical example of using a loop to process an array.

Let's look at a few more examples. Suppose that A is an array of double, and we want to find the

average of all the elements of the array. We can use a for loop to add up the numbers, and then

divide by the length of the array to get the average:

double total; // The sum of the numbers in the array.

double average; // The average of the numbers.

int i; // The array index.

total = 0;

for (i = 0; i < A.length; i++) {

 total = total + A[i]; // Add element number i to the total.

}

average = total / A.length; // A.length is the number of items

Another typical problem is to find the largest number in the array A. The strategy is to go

through the array, keeping track of the largest number found so far. We'll store the largest

number found so far in a variable called max. As we look through the array, whenever we find a

number larger than the current value of max, we change the value of max to that larger value.

After the whole array has been processed, max is the largest item in the array overall. The only

question is, what should the original value of max be? One possibility is to start with max equal

to A[0], and then to look through the rest of the array, starting from A[1], for larger items:

double max; // The largest number seen so far.

max = A[0]; // At first, the largest number seen is A[0].

int i;

for (i = 1; i < A.length; i++) {

 if (A[i] > max) {

 max = A[i];

 }

}

// at this point, max is the largest item in A

Sometimes, you only want to process some elements of the array. In that case, you can use an if

statement inside the for loop to decide whether or not to process a given element. Let's look at

the problem of averaging the elements of an array, but this time, suppose that we only want to

average the non-zero elements. In this case, the number of items that we add up can be less than

the length of the array, so we will need to keep a count of the number of items added to the sum:

double total; // The sum of the non-zero numbers in the array.

int count; // The number of non-zero numbers.

double average; // The average of the non-zero numbers.

int i;

total = 0;

count = 0;

for (i = 0; i < A.length; i++) {

 if (A[i] != 0) {

 total = total + A[i]; // Add element to the total

 count = count + 1; // and count it.

 }

}

if (count == 0) {

 System.out.println("There were no non-zero elements.");

}

else {

 average = total / count; // Divide by number of items

 System.out.printf("Average of %d elements is %1.5g%n",

 count, average);

}

3.8.3 Random Access

So far, my examples of array processing have used sequential access. That is, the elements of the

array were processed one after the other in the sequence in which they occur in the array. But

one of the big advantages of arrays is that they allow random access. That is, every element of

the array is equally accessible at any given time.

As an example, let's look at a well-known problem called the birthday problem: Suppose that

there are N people in a room. What's the chance that there are two people in the room who have

the same birthday? (That is, they were born on the same day in the same month, but not

necessarily in the same year.) Most people severely underestimate the probability. We will

actually look at a different version of the question: Suppose you choose people at random and

check their birthdays. How many people will you check before you find one who has the same

birthday as someone you've already checked? Of course, the answer in a particular case depends

on random factors, but we can simulate the experiment with a computer program and run the

program several times to get an idea of how many people need to be checked on average.

To simulate the experiment, we need to keep track of each birthday that we find. There are 365

different possible birthdays. (We'll ignore leap years.) For each possible birthday, we need to

keep track of whether or not we have already found a person who has that birthday. The answer

to this question is a boolean value, true or false. To hold the data for all 365 possible birthdays,

we can use an array of 365 boolean values:

boolean[] used;

used = new boolean[365];

For this problem, the days of the year are numbered from 0 to 364. The value of used[i] is

true if someone has been selected whose birthday is day number i. Initially, all the values in the

array are false. (Remember that this is done automatically when the array is created.) When we

select someone whose birthday is day number i, we first check whether used[i] is true. If it

is true, then this is the second person with that birthday. We are done. On the other hand, if

used[i] is false, we set used[i] to be true to record the fact that we've encountered

someone with that birthday, and we go on to the next person. Here is a program that carries out

the simulated experiment (of course, in the program, there are no simulated people, only

simulated birthdays):

/**

 * Simulate choosing people at random and checking the day of the

year they

 * were born on. If the birthday is the same as one that was seen

previously,

 * stop, and output the number of people who were checked.

 */

public class BirthdayProblem {

 public static void main(String[] args) {

 boolean[] used; // For recording the possible birthdays

 // that have been seen so far. A value

 // of true in used[i] means that a person

 // whose birthday is the i-th day of the

 // year has been found.

 int count; // The number of people who have been

checked.

 used = new boolean[365]; // Initially, all entries are

false.

 count = 0;

 while (true) {

 // Select a birthday at random, from 0 to 364.

 // If the birthday has already been used, quit.

 // Otherwise, record the birthday as used.

 int birthday; // The selected birthday.

 birthday = (int)(Math.random()*365);

 count++;

 System.out.printf("Person %d has birthday number %d",

count, birthday);

 System.out.println();

 if (used[birthday]) {

 // This day was found before; it's a duplicate. We

are done.

 break;

 }

 used[birthday] = true;

 } // end while

 System.out.println();

 System.out.println("A duplicate birthday was found after "

 + count + " tries.");

 }

} // end class BirthdayProblem

You should study the program to understand how it works and how it uses the array. Also, try it

out! You will probably find that a duplicate birthday tends to occur sooner than you expect.

3.8.4 Partially Full Arrays

Consider an application where the number of items that we want to store in an array changes as

the program runs. Since the size of the array can't be changed, a separate counter variable must

be used to keep track of how many spaces in the array are in use. (Of course, every space in the

array has to contain something; the question is, how many spaces contain useful or valid items?)

Consider, for example, a program that reads positive integers entered by the user and stores them

for later processing. The program stops reading when the user inputs a number that is less than or

equal to zero. The input numbers can be kept in an array, numbers, of type int[]. Let's say

that no more than 100 numbers will be input. Then the size of the array can be fixed at 100. But

the program must keep track of how many numbers have actually been read and stored in the

array. For this, it can use an integer variable. Each time a number is stored in the array, we have

to count it; that is, value of the counter variable must be incremented by one. One question is,

when we add a new item to the array, where do we put it? Well, if the number of items is

count, then they would be stored in the array in positions number 0, 1, ..., (count-1). The next

open spot would be position number count, so that's where we should put the new item.

As a rather silly example, let's write a program that will read the numbers input by the user and

then print them in the reverse of the order in which they were entered. Assume that an input

value equal to zero marks the end of the data. (This is, at least, a processing task that requires

that the numbers be saved in an array. Note that many types of processing, such as finding the

sum or average or maximum of the numbers, can be done without saving the individual

numbers.)

public class ReverseInputNumbers {

 public static void main(String[] args) {

 int[] numbers; // An array for storing the input values.

 int count; // The number of numbers saved in the array.

 int num; // One of the numbers input by the user.

 numbers = new int[100]; // Space for 100 ints.

 count = 0; // No numbers have been saved yet.

 System.out.println("Enter up to 100 positive integers; enter 0

to end.");

 while (true) { // Get the numbers and put them in the array.

 System.out.print("? ");

 num = TextIO.getlnInt();

 if (num <= 0) {

 // Zero marks the end of input; we have all the

numbers.

 break;

 }

 numbers[count] = num; // Put num in position count.

 count++; // Count the number

 }

 System.out.println("\nYour numbers in reverse order are:\n");

 for (int i = count - 1; i >= 0; i--) {

 System.out.println(numbers[i]);

 }

 } // end main();

} // end class ReverseInputNumbers

It is especially important to note how the variable count plays a dual role. It is the number of

items that have been entered into the array. But it is also the index of the next available spot in

the array.

When the time comes to print out the numbers in the array, the last occupied spot in the array is

location count - 1, so the for loop prints out values starting from location count - 1 and

going down to 0. This is also a nice example of processing the elements of an array in reverse

order.

You might wonder what would happen in this program if the user tries to input more than 100

numbers. The result would be an error that would crash the program. When the user enters the

101-st number, the program tries to store that number in an array element number[100].

However, there is no such array element. There are only 100 items in the array, and the index of

the last item is 99. The attempt to use number[100] generates an exception of type

ArrayIndexOutOfBoundsException. Exceptions of this type are a common source of run-time

errors in programs that use arrays.

3.8.5 Two-dimensional Arrays

The arrays that we have considered so far are "one-dimensional." This means that the array

consists of a sequence of elements that can be thought of as being laid out along a line. It is also

possible to have two-dimensional arrays, where the elements can be laid out in a rectangular

grid. We consider them only briefly here, but will return to the topic in Section 7.5.

In a two-dimensional, or "2D," array, the elements can be arranged in rows and columns. Here,

for example, is a 2D array of int that has five rows and seven columns:

http://math.hws.edu/javanotes/c7/s5.html

This 5-by-7 grid contains a total of 35 elements. The rows in a 2D array are numbered 0, 1, 2, ...,

up to the number of rows minus one. Similarly, the columns are numbered from zero up to the

number of columns minus one. Each individual element in the array can be picked out by

specifying its row number and its column number. (The illustration shown here is not what the

array actually looks like in the computer's memory, but it does show the logical structure of the

array.)

In Java, the syntax for two-dimensional arrays is similar to the syntax for one-dimensional

arrays, except that an extra index is involved, since picking out an element requires both a row

number and a column number. For example, if A is a 2D array of int, then A[3][2] would be

the element in row 3, column 2. That would pick out the number 17 in the array shown above.

The type for A would be given as int[][], with two pairs of empty brackets. To declare the

array variable and create the array, you could say,

int[][] A;

A = new int[5][7];

The second line creates a 2D array with 5 rows and 7 columns. Two-dimensional arrays are often

processed using nested for loops. For example, the following code segment will print out the

elements of A in neat columns:

int row, col; // loop-control-variables for accessing rows and

columns in A

for (row = 0; row < 5; row++) {

 for (col = 0; col < 7; col++) {

 System.out.printf("%7d", A[row][col]);

 }

 System.out.println();

}

The base type of a 2D array can be anything, so you can have arrays of type double[][],

String[][], and so on.

There are some natural uses for 2D arrays. For example, a 2D array can be used to store the

contents of the board in a game such as chess or checkers. And an example in Subsection 4.6.3

uses a 2D array to hold the colors of a grid of colored squares. But sometimes two-dimensional

arrays are used in problems in which the grid is not so visually obvious. Consider a company that

owns 25 stores. Suppose that the company has data about the profit earned at each store for each

month in the year 2014. If the stores are numbered from 0 to 24, and if the twelve months from

http://math.hws.edu/javanotes/c4/s6.html#subroutines.6.3

January 2014 through December 2014 are numbered from 0 to 11, then the profit data could be

stored in an array, profit, created as follows:

double[][] profit;

profit = new double[25][12];

profit[3][2] would be the amount of profit earned at store number 3 in March, and more

generally, profit[storeNum][monthNum] would be the amount of profit earned in store

number storeNum in month number monthNum (where the numbering, remember, starts from

zero).

Let's assume that the profit array has already been filled with data. This data can be processed

in a lot of interesting ways. For example, the total profit for the company -- for the whole year

from all its stores -- can be calculated by adding up all the entries in the array:

double totalProfit; // Company's total profit in 2014.

int store, month; // variables for looping through the stores and

the months

totalProfit = 0;

for (store = 0; store < 25; store++) {

 for (month = 0; month < 12; month++)

 totalProfit += profit[store][month];

}

Sometimes it is necessary to process a single row or a single column of an array, not the entire

array. For example, to compute the total profit earned by the company in December, that is, in

month number 11, you could use the loop:

double decemberProfit;

int storeNum;

doubleProfit = 0.0;

for (storeNum = 0; storeNum < 25; storeNum++) {

 decemberProfit += profit[storeNum][11];

}

Two-dimensional arrays are sometimes useful, but they are much less common than one-

dimensional arrays. Java actually allows arrays of even higher dimension, but they are only

rarely encountered in practice.

3.9.1 Drawing Shapes

To understand computer graphics, you need to know a little about pixels and coordinate systems.

The computer screen is made up of small squares called pixels, arranged in rows and columns,

usually about 100 pixels per inch. The computer controls the color of the pixels, and drawing is

done by changing the colors of individual pixels. Each pixel has a pair of integer coordinates,

often called x and y, that specify the pixel's horizontal and vertical position. For a graphics

context drawing to a rectangular area on the screen, the coordinates of the pixel in the upper left

corner of the rectangle are (0,0). The x coordinate increases from the left to right, and the y

coordinate increases from top to bottom. Shapes are specified using pixels. For example, a

rectangle is specified by the x and y coordinates of its upper left corner and by its width and

height measured in pixels. Here's a picture of a rectangular drawing area, showing the ranges of x

and y coordinates. The "width" and "height" in this picture are give the size of the drawing area,

in pixels:

Assuming that the drawing area is 800-by-500 pixels, the rectangle in the upper left of the

picture would have, approximately, width 200, height 150, and upper left corner at coordinates

(50,50).

Drawing in Java is done using a graphics context. A graphics context is an object. As an object,

it can include subroutines and data. Among the subroutines in a graphics context are routines for

drawing basic shapes such as lines, rectangles, ovals, and text. (When text appears on the screen,

the characters have to be drawn there by the computer, just like the computer draws any other

shapes.) Among the data in a graphics context are the color and font that are currently selected

for drawing. (A font determines the style and size of characters.) One other piece of data in a

graphics context is the "drawing surface" on which the drawing is done. Generally, the drawing

surface is a rectangle on the computer screen, although it can be other surfaces such as a page to

be printed. Different graphics context objects can draw to different drawing surfaces. For us, the

drawing surface will be the content area of a window, not including its border or title bar.

A graphics context is represented by a variable. The type for the variable is Graphics (just like

the type for a string variable is String). The variable is often named g, but the name of the

variable is of course up to the programmer. Here are a few of the subroutines that are available in

a graphics context g:

 g.setColor(c), is called to set the color to be used for drawing. The parameter, c is an
object belonging to a class named Color. There are about a dozen constants representing
standard colors that can be used as the parameter in this subroutine. The standard colors
include Color.BLACK, Color.WHITE, Color.LIGHT_GRAY, Color.RED,

Color.GREEN, and Color.BLUE. (Later, we will see that it is also possible to create new
colors.) For example, if you want to draw in red, you would say
"g.setColor(Color.RED);". The specified color is used for all subsequent drawing
operations up until the next time g.setColor() is called.

 g.drawLine(x1,y1,x2,y2) draws a line from the point with coordinates (x1,y1) to the
point with coordinates (x2,y2).

 g.drawRect(x,y,w,h) draws the outline of a rectangle with vertical and horizontal sides.
The parameters x, y, w, and h must be integers or integer-valued expressions. This subroutine
draws the outline of the rectangle whose top-left corner is x pixels from the left edge of the
drawing area and y pixels down from the top. The width of the rectangle is w pixels, and the
height is h pixels. The color that is used is black, unless a different color has been set by calling

g.setColor().
 g.fillRect(x,y,w,h) is similar to g.drawRect() except that it fills in the inside of the

rectangle instead of drawing an outline.
 g.drawOval(x,y,w,h) draws the outline of an oval. The oval just fits inside the rectangle

that would be drawn by g.drawRect(x,y,w,h). To get a circle, use the same values for w

and for h.
 g.fillOval(x,y,w,h) is similar to g.drawOval() except that it fills in the inside of the

oval instead of drawing an outline.

This is enough information to draw some pictures using Java graphics. To start with something

simple, let's say that we want to draw a set of ten parallel lines, something like this:

Let's say that the lines are 200 pixels long and that the distance from each line to the next is 10

pixels, and let's put the start of the first line at the pixel with coordinates (100,50). To draw one

line, we just have to call g.drawLine(x1,y1,x2,y2) with appropriate values for the

parameters. Now, all the lines start at x-coordinate 100, so we can use the constant 100 as the

value for x1. Since the lines are 200 pixels long, we can use the constant 300 as the value for

x2. The y-coordinates of the lines are different, but we can see that both endpoints of a line have

the same y-coordinates, so we can use a single variable as the value for y1 and for y2. Using y

as the name of that variable, the command for drawing one of the lines becomes

g.drawLine(100,y,300,y). The value of y is 50 for the top line and increases by 10 each

time we move down from one line to the next. We just need to make sure that y takes on the

correct sequence of values. We can use a for loop that counts from 1 to 10:

int y; // y-coordinate for the line

int i; // loop control variable

y = 50; // y starts at 50 for the first line

for (i = 1; i <= 10; i++) {

 g.drawLine(100, y, 300, y);

 y = y + 10; // increase y by 10 before drawing the next line.

}

Alternatively, we could use y itself as the loop control variable, noting that the value of y for the

last line is 140:

int y;

for (y = 50; y <= 140; y = y + 50)

 g.drawLine(100, y, 300, y);

If we wanted to set the color of the lines, we could do that by calling g.setColor() before

drawing them. If we just draw the lines without setting the color, they will be black.

For something a little more complicated, let's draw a large number of randomly colored,

randomly positioned, filled circles. Since we only know a few colors, I will randomly select the

color to be red, green, or blue. That can be done with a simple switch statement, similar to the

ones in Subsection 3.6.4:

switch ((int)(3*Math.random())) {

 case 0:

 g.setColor(Color.RED);

 break;

 case 1:

 g.setColor(Color.GREEN);

 break;

 case 2:

 g.setColor(Color.BLUE);

 break;

}

I will choose the center points of the circles at random. Let's say that the width of the drawing

area is given by a variable, width. Then we want a random value in the range 0 to width-1

for the horizontal position of the center. Similarly, the vertical position of the center will a

random value in the range 0 to height-1. That leaves the size of the circle to be determined; I

will make the radius of each circle equal to 50 pixels. We can draw the circle with a statement of

the form g.fillOval(x,y,w,h). However, in this command, x and y are not the

coordinates of the center of the circle; they are the upper left corner of a rectangle drawn around

the circle. To get values for x and y, we have to move back from the center of the circle by 50

pixels, an amount equal to the radius of the circle. The parameters w and h give the width and

height of the rectangle, which has to be twice the radius, or 100 pixels in this case. Taking all this

into account, here is a code segment for drawing a random circle:

centerX = (int)(width*Math.random());

centerY = (int)(height*Math.random());

g.fillOval(centerX - 50, centerY - 50, 100, 100);

http://math.hws.edu/javanotes/c3/s6.html#control.6.4

This code comes after the color-setting code given above. In the end, I found that the picture

looks better if I also draw a black outline around each filled circle, so I added this code at the

end:

g.setColor(Color.BLACK);

g.drawOval(centerX - 50, centerY - 50, 100, 100);

Finally, to get a large number of circles, I put all of the above code into a for loop that runs for

500 executions. Here's a typical drawing from the program, shown at reduced size:

3.9.2 Drawing in a Program

Now, as you know, you can't just have a bunch of Java code standing by itself. The code has to

be inside a subroutine definition that is itself inside a class definition. In fact, for my circle-

drawing program, the complete subroutine for drawing the picture looks like this:

public void drawFrame(Graphics g, int frameNumber, int width, int

height) {

 int centerX; // The x-coord of the center of a disk.

 int centerY; // The y-coord of the center of a disk.

 int colorChoice; // Used to select a random color.

 int count; // Loop control variable for counting disks.

 for (count = 0; count < 500; count++) {

 colorChoice = (int)(3*Math.random());

 switch (colorChoice) {

 case 0:

 g.setColor(Color.RED);

 break;

 case 1:

 g.setColor(Color.GREEN);

 break;

 case 2:

 g.setColor(Color.BLUE);

 break;

 }

 centerX = (int)(width*Math.random());

 centerY = (int)(height*Math.random());

 g.fillOval(centerX - 50, centerY - 50, 100, 100);

 g.setColor(Color.BLACK);

 g.drawOval(centerX - 50, centerY - 50, 100, 100);

 }

}

This is the first subroutine definition that you have seen, other than main(), but you will learn

all about defining subroutines in the next chapter. The first line of the definition makes available

certain values that are used in the subroutine: the graphics context g and the width and

height of the drawing area. (Ignore frameNumber for now.) These values come from

outside the subroutine, but the subroutine can use them. The point here is that to draw something,

you just have to fill in the inside of the subroutine, just as you write a program by filling in the

inside of main().

The subroutine definition still has to go inside a class that defines the program. In this case, the

class is named RandomCircles, and the complete program is available in the sample source code

file RandomCircles.java. You can run that program to see the drawing.

There's a lot in the program that you won't understand. To make your own drawing, all you have

to do is erase the inside of the drawFrame() routine in the source code and substitute your

own drawing code. You don't need to understand the rest. The source code file

SimpleAnimationStarter.java can be used as a basis for your own first graphics explorations. It's

essentially the same as RandomCircles.java but with the drawing code omitted. You'll

need it to do some of the exercises for this chapter.

(By the way, you might notice that the main() subroutine uses the word static in its

definition, but drawFrame() does not. This has to do with the fact that the drawing area in this

program is an object, and drawFrame is a subroutine in that object. The difference between

static and non-static subroutines is important but not something that we need to worry about for

the time being. It will become important for us in Chapter 5.)

3.9.3 Animation

The name "SimpleAnimationStarter" should give you a clue that we are looking at the possibility

of more than just individual drawings here. A computer animation is simply a sequence of

individual pictures, displayed quickly one after the other. If the change from each picture to the

next is small, the user will perceive the sequence of images as a continuous animation. Each

picture in the animation is called a frame. SimpleAnimationStarter.java is configured

to draw fifty frames every second, although that can be changed. (In RandomCircles.java,

it has been changed to one frame every three seconds, so that the program actually draws a new

http://math.hws.edu/javanotes/c4/index.html
http://math.hws.edu/javanotes/source/chapter3/RandomCircles.java
http://math.hws.edu/javanotes/source/chapter3/SimpleAnimationStarter.java
http://math.hws.edu/javanotes/c5/index.html

set of random circles every three seconds.) The frames in the animation are numbered 0, 1, 2,

3, ..., and the value of frameNumber in the drawFrame() subroutine tells you which frame

you are drawing. The key to programming the animation is to base what you draw on the

frameNumber.

As an example of animation, we look at drawing a set of nested rectangles. The rectangles will

shrink towards the center of the drawing, giving an illusion of infinite motion. Here's one frame

from the animation:

Consider how to draw a picture like this one. The rectangles can be drawn with a while loop,

which draws the rectangles starting from the one on the outside and moving in. Think about what

variables will be needed and how they change from one iteration of the while loop to the next.

Each time through the loop, the rectangle that is drawn is smaller than the previous one and is

moved down and over a bit. The difference between two rectangles is in their size and in the

coordinates of the upper left corner. We need a variable to represent the size. The x and y-

coordinates are the same, and they can be represented by the same variable. I call that variable

inset, since it is the amount by which the edges of the rectangle are inset from the edges of the

drawing area. The size decreases from one rectangle to the next, while the inset increases.

The while loop ends when size becomes less than or equal to zero. In general outline, the

algorithm for drawing one frame is

Set the drawing color to light gray (using the g.setColor

subroutine)

Fill in the entire picture (using the g.fillRect subroutine)

Set the drawing color to black

Set the amount of inset for the first rectangle

Set the rectangle width and height for the first rectangle

while the width and height are both greater than zero:

 draw a rectangle (using the g.drawRect subroutine)

 increase the inset (to move the next rectangle over and down)

 decrease width the height (the make the next rectangle smaller)

In my program, each rectangle is 15 pixels away from the rectangle that surrounds it, so the

inset is increased by 15 each time through the while loop. The rectangle shrinks by 15 pixels

on the left and by 15 pixels on the right, so the width of the rectangle shrinks by 30 before

drawing the next rectangle. The height also shrinks by 30 pixels each time through the loop.

The pseudocode is then easy to translate into Java, except that we need to know what initial

values to use for the inset, width, and height of the first rectangle. To figure that out, we have to

think about the fact that the picture is animated, so that what we draw will depend in some way

on the frame number. From one frame to the next frame of the animation, the top-left corner of

the outer rectangle moves over and down; that is, the inset for the outer rectangle increase

from one frame to the next. We can make this happen by setting the inset for frame number 0 to

0, the inset for frame number 1 to 1, and so on. But that can't go on forever, or eventually all the

rectangles would disappear. In fact, when the animation gets to frame 15, a new rectangle should

appear at the outside of the drawing area -- but it's not really a "new rectangle," it's just that the

inset for the outer rectangle goes back to zero. So, as the animation proceeds, the inset should

go through the sequence of values 0, 1, 2, ..., 14 over and over. We can accomplish that very

easily by setting

inset = frameNumber % 15;

Finally, note that the first rectangle fills the drawing area except for a border of size inset

around the outside of the rectangle. This means that the the width of the rectangle is the width of

the drawing area minus two times the inset, and similarly for the height. Here, then is the

drawFrame() subroutine for the moving rectangle example:

public void drawFrame(Graphics g, int frameNumber, int width, int

height) {

 int inset; // Gap between edges of drawing area and the outer

rectangle.

 int rectWidth, rectHeight; // The size of one of the

rectangles.

 g.setColor(Color.LIGHT_GRAY);

 g.fillRect(0,0,width,height); // Fill drawing area with light

gray.

 g.setColor(Color.BLACK); // Draw the rectangles in black.

 inset = frameNumber % 15; // inset for the outer rectangle

 rectWidth = width - 2*inset; // drawing area width minus two

insets

 rectHeight = height - 2*inset; // drawing area height minus two

insets

 while (rectWidth >= 0 && rectHeight >= 0) {

 g.drawRect(inset, inset, rectWidth, rectHeight);

 inset += 15; // rectangles are 15 pixels apart

 rectWidth -= 30;

 rectHeight -= 30;

 }

}

